Skip to main content
Log in

Relationship between the Tibetan Plateau-tropical Indian Ocean thermal contrast and the South Asian summer monsoon

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

The impact of land-sea thermal contrast on the South Asian summer monsoon (SASM) was investigated by calculating the atmospheric heat sources (AHS) and baroclinic component with ERA5 data for the period 1979–2019. Using diagnostic and statistical methods, it was found that the thermal contrast between the Tibetan Plateau (TP) and the tropical Indian Ocean (TIO) affects the South Asian monsoon circulation through the meridional temperature gradient in the upper troposphere. The seasonal changes of the AHS of the TP and TIO are reversed. In summer, the TP is the strongest at the same latitude whereas the TIO is the weakest, and the thermal contrast is the most obvious. The heat sources of the TP and TIO are located on the north and south side of the strong baroclinic area of the SASM region, respectively, and both of which are dominated by deep convective heating in the upper troposphere. The TP-TIO regional meridional thermal contrast index (QI) based on the AHS, and the SASM index (MI) based on baroclinicity were found to be strongly positively correlated. In years of abnormally high QI, the thermal contrast between the TP and TIO is strong in summer, which warms the upper troposphere over Eurasia and cools it over the TIO. The stronger temperature gradient enhances the baroclinicity in the troposphere, which results in a strengthening of the low-level westerly airflow and the upper-level easterly airflow. The anomalous winds strengthen the South Asian high (SAH), with the warmer center in the upper troposphere, and the enhanced Walker circulation over the equatorial Indian Ocean. Finally, the anomalous circulation leads to much more precipitation over the SASM region. The influence of abnormally low QI is almost the opposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Chou C (2003). Land-sea heating contrast in an idealized Asian summer monsoon. Clim Dyn, 21(1): 11–25

    Article  Google Scholar 

  • Dai A G, Li H M, Sun Y, Hong L C, Ho L, Chou C, Zhou T J (2013). The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J Geophys Res, 118(13): 7024–7045

    Article  Google Scholar 

  • Duan A M, Wu G X (2005). Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Clim Dyn, 24 (7–8): 793–807

    Article  Google Scholar 

  • Fu C, Fletcher J O (1985). The relationship between Tibet-tropical ocean thermal contrast and interannual variability of Indian monsoon rainfall. J Appl Meteorol, 24(8): 841–847

    Article  Google Scholar 

  • Goswami B N, Krishnamurthy V, Annmalai H (1999). A broad-scale circulation index for the interannual variability of the Indian summer monsoon. Q J R Meteorol Soc, 125(554): 611–633

    Article  Google Scholar 

  • Guan Z Y, Xu J J, Guo P W, Wang C (1997). The structure and variations of Asian summer monsoon reveled by barotropic and baroclinic modes the baroclinic mode analysis. Acta Meteorol Sin, 55(02): 19–26 (in Chinese)

    Google Scholar 

  • Guan Z (2000). The variations of Asian monsoon as revealed by the variations of kinetic energy of barotropic/baroclinic modes of the wind field. Transactions of Atmospheric Sciences, 23(03): 313–322 (in Chinese)

    Google Scholar 

  • Hansen J, Ruedy R, Sato M, Lo K (2010). Global surface temperature change. Rev Geophys, 48(4): RG4004

    Article  Google Scholar 

  • He H Y, Sui C H, Jian M Q, Wen Z P, Lan G (2003). The evolution of tropospheric temperature field and its relationship with the onset of Asian summer monsoon. J Meteorol Soc Jpn, 81(5): 1201–1223

    Article  Google Scholar 

  • He Y L, Huang J P, Ji M J (2014). Impact of land-sea thermal contrast on interdecadal variation in circulation and blocking. Clim Dyn, 43(12): 3267–3279

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan R J, Hólm E, Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, Vamborg F, Villaume S, Thépaut J (2020). The ERA5 global reanalysis. Q J R Meteorol Soc, 146(730): 1999–2049.

    Article  Google Scholar 

  • Huang J Y, Li Q X (2015). Methods for Statistical Analysis of Meteorological Data. Beijing: Meteorology Press (in Chinese)

    Google Scholar 

  • Holton J R, Hakim G J (2004). An Introduction to Dynamic Meteorology. Burlington: Elsevier Acad

    Google Scholar 

  • Kripalani R H, Kulkarni A, Sabade S S, Khandekar M L (2003). Indian Monsoon variability in a global warming scenario. Nat Hazards, 29 (2): 189–206

    Article  Google Scholar 

  • Li C F, Yanai M (1996). The onset and interannual variability of the Asian summer monsoon in relation to land-sea thermal contrast. J Clim, 9(2): 358–375

    Article  Google Scholar 

  • Li J P, Zeng Q C (2002). A unified monsoon index. Geophys Res Lett, 29(8): 115–1–115–4.

    Article  Google Scholar 

  • Liebmann B, Smith C A (1996). Description of a complete (interpolated)— outgoing longwave radiation dataset. Bull Amer Meteor Soc, 77(6): 1275–1277

    Google Scholar 

  • Liu X, Wu G X, Liu Y M, Liu P (2002). Diabatic heating over the Tibetan Plateau and seasonal variastions of the Asian Circulation and summer monsoon. Chin J Atmos Sci, 6: 781–793 (in Chinese)

    Google Scholar 

  • Liu X, Yanai M (2001). Relationship between the Indian monsoon rainfall and the tropospheric temperature over the Eurasia Continent. Q J R Meteorol Soc, 127(573): 909–937

    Article  Google Scholar 

  • Liu Y M, Wu G X, Hong J L, Dong B W, Duan A M, Bao Q, Zhou T J (2012). Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Clim Dyn, 39(5): 1169–1181

    Article  Google Scholar 

  • Liu Y M, Wu G X, Liu H, Liu P (1999). The effect of spatially nonuniform heating on the formation and variation of subtropical high part III: condensation heating and south Asia high and western Pacific. Acta Meteorol Sin, 57(5): 525–538 (in Chinese)

    Google Scholar 

  • Luo X Q, Xu J J (2019). Estimate of atmospheric heat source over Tibetan Plateau and its uncertainties. Climate Change Research, 15 (1): 33–40 (in Chinese)

    Google Scholar 

  • Luo X Q, Xu J J, Li K (2019). A review of atmospheric heat sources over the Tibetan Plateau. J Guangdong Ocean Univ, 39(06): 130–136 (in Chinese)

    Google Scholar 

  • Naveendrakumar G, Vithanage M, Kwon H H, Chandrasekara S S K, Iqbal M C, Pathmarajah S, Fernando W C D K, Obeysekera J (2019). South Asian perspective on temperature and rainfall extremes: a review. Atmos Res, 225: 110–120

    Article  Google Scholar 

  • Parthasarathy B, Kumar K R, Kothawale D R (1992). Indian summer monsoon rainfall indices: 1871–1990. Meteorological Magazine, 121 (1441): 174–186

    Google Scholar 

  • Roxy M K, Ritika K, Terray P, Murtugudde R, Ashok K, Goswami B N (2015). Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nat Commun, 6 (1): 7423

    Article  Google Scholar 

  • Sontakke N A, Pant G B, Singh N (1993). Construction of all-India summer monsoon rainfall series for the period 1844–1991. J Clim, 6 (9): 1807–1811

    Article  Google Scholar 

  • Sun X R, Chen L X, He J H (2002). Index of the sea thermal difference and its relation to interannual variation of summer circulation and rainfall over East Asian. Acta Meteorol Sin, 60(02): 164–172 (in Chinese)

    Google Scholar 

  • Sun Y, Ding Y H, Dai A G (2010). Changing links between South Asian summer monsoon circulation and tropospheric land-sea thermal contrasts under a warming scenario, Geophys Res Lett, 37(2):195–205

    Article  Google Scholar 

  • Turner A G, Annamalai H (2012). Climate change and the South Asian summer monsoon. Nat Clim Chang, 2(8): 587–595

    Article  Google Scholar 

  • Tu H W, Tian H Y, Xu X, Zhang R (2020). Influence of the south-north displacement of South Asia High on the distribution of atmospheric composition in the upper troposphere-lower stratosphere over the Asian Monsoon Region. Plateau Meteorol, 39(2): 333–346

    Google Scholar 

  • Wang B, Fan Z (1999). Choice of South Asian summer monsoon indices. Bull Am Meteorol Soc, 80(4): 629–638

    Article  Google Scholar 

  • Wang B, Liu J, Kim H J, Webster P J, Yim S Y, Xiang B (2013). Northern Hemisphere summer monsoon intensified by mega-El Nino/southern oscillation and Atlantic multidecadal oscillation. Proc Natl Acad Sci USA, 110(14): 5347–5352

    Article  Google Scholar 

  • Wang P X, Wang B, Cheng H, Fasullo J, Guo Z T, Kiefer T, Liu Z Y (2017). The global monsoon across time scales: mechanisms and outstanding issues. Earth Sci Rev, 174: 84–121

    Article  Google Scholar 

  • Wang Y N, Zhang B, Chen L X, He J H, Li W, Chen H (2008). Relationship between the atmospheric heat source over Tibetan Plateau and the heat source and general circulation over East Asia. Sci Bull (Beijing), 53(21): 3387–3394

    Article  Google Scholar 

  • Webster P J, Magaña V O, Palmer T N, Shukla J, Tomas R A, Yanai M, Yasunari T (1998). Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res D Atmospheres, 103(C7): 14451–14510

    Article  Google Scholar 

  • Webster P J, Yang S (1992). Monsoon and Enso: selectively interactive systems. Q J R Meteorol Soc, 118(507): 877–926

    Article  Google Scholar 

  • Wei W (2015). The interannual shift of the South Asia High and its relation with the Asian summer monsoon. Dissertation for the Doctoral Degree. Beijing: Chinese Academy of Meteorological Sciences (in Chinese)

    Google Scholar 

  • Wu G X, Duan A M, Liu Y M, Yang J H, Liu B Q, Ren S L, Zhang Y N, Wang T M, Liang X Y, Guan Y (2013). Recent advances in the study on the dynamics of the Asian summer monsoon onset. Chin J Atmos Sci, 37(2): 211–228 (in Chinese)

    Google Scholar 

  • Wu G X, Bian H, Liu Y M, Bao Q, Ren R C, Liu B Q (2016). Recent progresses on dynamics of the Tibetan Plateau and Asian summer monsoon. Chin J Atmos Sci, 40(1): 22–32 (in Chinese)

    Google Scholar 

  • Wu G, Liu Y (2003). Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophys Res Lett, 30(5): 5–1

    Article  Google Scholar 

  • Wu G, Liu Y, He B, Bao Q, Duan A, Jin F F (2012). Thermal controls on the Asian summer monsoon. Sci Rep, 2(1): 404

    Article  Google Scholar 

  • Wu G X, Liu Y M, Liu X, Duan A M, Liang X Y (2005). How the heating over the Tibetan Plateau affects the Asian climate in summer. Chinese Journal of Atmospheric Sciences, 29(1):47–56 + 167–168 (in Chinese)

    Google Scholar 

  • Xu J J, Chan J C L (2002). Relationship between the planetary—scale circulation over East Asia and the intensity of the South Asian Summer Monsoon. Geophys Res Lett, 29(18): 1866

    Article  Google Scholar 

  • Yanai M, Li C F, Song Z S (1992). Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J Meteorol Soc Jpn, 70(1B): 319–351

    Article  Google Scholar 

  • Yanai M, Tomita T (1998). Seasonal and interannual variability of atmospheric heat sources and moisture sinks as determined from NCEP-NCAR reanalysis. J Clim, 11(3): 463–482

    Article  Google Scholar 

  • Yanai M, Wu G X (2006). Effects of the Tibetan plateau. In: The Asian Monsoon. Heidelberg: Springer, 513–549

    Chapter  Google Scholar 

  • You Q, Min J, Zhang W, Pepin N, Kang S (2015). Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau. Clim Dyn, 45(3–4): 791–806

    Article  Google Scholar 

  • Zhang Y, Fan G, Hua W, Zhang Y, Wang B, Lai X (2017). Differences in atmospheric heat source between the Tibetan Plateau-South Asia region and the southern Indian Ocean and their impacts on the Indian summer monsoon outbreak. J Meteorol Res, 31(3): 540–554

    Article  Google Scholar 

  • Zhan R F, Li J P (2008). The effect of atmospheric heat source in the Tibetan Plateau and the tropical Northwest Pacific Ocean on the interdecadal variation of summer stratospheric-tropospheric water vapor exchange in Asia. Sci China Ser D Earth Sci, 38(8): 1028–1040 (in Chinese)

    Google Scholar 

  • Zhao Y, Duan A M, Wu G X, Sun R Z (2019). Response of the Indian ocean to the Tibetan Plateau thermal forcing in late spring. J Clim, 32 (20): 6917–6938

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (No. 2019QZKK0105), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDA20060501) and the 2019 Non-funded Science and Technology Research Project of Zhanjiang (No. 200518174546338).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, X., Xu, J., Zhang, Y. et al. Relationship between the Tibetan Plateau-tropical Indian Ocean thermal contrast and the South Asian summer monsoon. Front. Earth Sci. 15, 151–166 (2021). https://doi.org/10.1007/s11707-020-0846-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-020-0846-9

Keywords

Navigation