Skip to main content
Log in

Color Indices of T Tauri Stars in Variable Circumstellar Extinction Models

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

Variable circumstellar extinction models as applied to T Tauri stars are considered. In contrast to hotter UX Ori stars, for which simplified eclipse models are applicable, the star is deemed a point source of light, while the circumstellar dust clouds obscuring the star are assumed to be homogeneous. In the case considered here, both these simplifications may not work. Hot accretion spots are formed through accretion on T Tauri stars, while the dust structures obscuring the star from the observer can be inhomogeneous within the stellar disk. The families of color–magnitude diagrams have been computed by taking into account these two factors. It is shown that in such models the color tracks on the diagrams can differ greatly in shape from those computed in eclipse models for hot UX Ori stars. The results obtained may be applicable to AA Tau stars demonstrating eclipses by the inner circumstellar disk regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Cases where the inner and outer disks have different inclinations are known. For example, according to submillimeter interferometry, the circumstellar disk of CQ Tau has an inclination \(i\approx 37^{\circ}\) (Pinilla et al. 2018), while according to Keck (near-infrared) interferometry, the inner disk is inclined at \(i\approx 48^{\circ}\) (Eisner et al. 2004).

  2. Cool T Tauri stars can also exhibit rotational modulation of light due to the presence of cool (magnetic) spots on their surface. As a rule, the modulation amplitude is low (Herbst et al. 1994). Therefore, we do not consider its influence on the color indices during the eclipses of these stars.

  3. The inner disk of AA Tau is highly inclined relative to the plane of the sky (\(i\approx 75^{\circ}\), Loomis et al. 2017), which makes this star akin to UX Ori variables. According to Kreplin et al. (2016), in the star UX Ori itself the disk is inclined at \(i=70^{\circ}\pm 5^{\circ}\).

REFERENCES

  1. S. H. P. Alencar, P. S. Teixeira, M. M. Guimaraes, P. T. McGinnis, J. F. Gameiro, J. Bouvier, S. Aigrain, E. Flaccomio, and F. Favata, Astron. Astrophys. 519, A88 (2010).

    Article  ADS  Google Scholar 

  2. M. Ansdell, E. Gaidos, C. Hedges, M. Tazzari, A. L. Kraus, M. C. Wyatt, G. M. Kennedy, J. P. Williams, et al., Mon. Not. R. Astron. Soc. 492, 572 (2020).

    Article  ADS  Google Scholar 

  3. O. Yu. Barsunova, V. P. Grinin, and S. G. Sergeev, Astrophysics 56, 395 (2013).

    Article  ADS  Google Scholar 

  4. E. A. Bibo and P. S. Thé, Astron. Astrophys. 236, 55B (1990).

    Google Scholar 

  5. J. Bouvier, A. Chelli, S. Allain, L. Carrasco, R. Costero, I. Cruz-Gonzalez, C. Dougados, M. Fernández, et al., Astron. Astrophys. 349, 619 (1999).

    ADS  Google Scholar 

  6. J. Bouvier, K. N. Grankin, S. H. P. Alencar, C. Dougados, M. Fernández, G. Basri, C. Batalha, E. Guenther, et al., Astron. Astrophys. 409, 169 (2003).

    Article  ADS  Google Scholar 

  7. J. Bouvier, K. N. Grankin, L. E. Ellerbroek, H. Bouy, and D. Barrado, Astron. Astrophys. 557, A77 (2013).

    Article  ADS  Google Scholar 

  8. J. W. Bredall, B. J. Shappee, E. Gaidos, T. Jayasinghe, P. Vallely, K. Z. Stanek, C. S. Kochanek, J. Gagné, et al., Mon. Not. R. Astron. Soc. 496, 3257 (2020).

    Article  ADS  Google Scholar 

  9. L. E. DeWarf, J. F. Sepinsky, E. F. Guinan, I. Ribas, and I. Nadalin, Astrophys. J. 590, 357 (2003).

    Article  ADS  Google Scholar 

  10. A. Dodin, K. Grankin, S. Lamzin, A. Nadjip, B. Safonov, D. Shakhovskoi, V. Shenavrin, A. Tatarnikov, and O. Vozyakova, Mon. Not. R. Astron. Soc. 482, 5524 (2019).

    Article  ADS  Google Scholar 

  11. C. P. Dullemond, M. F. van den Ancker, B. Acke, and R. van Boekel, Astrophys. J. 594 L47 (2003).

    Article  ADS  Google Scholar 

  12. J. A. Eisner, B. F. Lane, L. A. Hillenbrand, R. L. Akeson, and A. I. Sargent, Astrophys. J. 613, 1049 (2004).

    Article  ADS  Google Scholar 

  13. S. Facchini, C. F. Manara, P. C. Schneider, C. J. Clarke, J. Bouvier, G. Rosotti, R. Booth, and T. J. Haworth, Astron. Astrophys. 596, A38 (2016).

    Article  ADS  Google Scholar 

  14. V. P. Grinin, Sov. Astron. Lett. 14, 27 (1988).

    ADS  Google Scholar 

  15. V. P. Grinin, N. N. Kiselev, N. Kh. Minikulov, G. P. Chernova, and N. V. Voshchinnikov, Astrophys. Space Sci. 186, 283 (1991).

    Article  ADS  Google Scholar 

  16. V. P. Grinin, A. A. Arkharov, O. Yu. Barsunova, S. G. Sergeev, and L. V. Tambovtseva, Astron. Lett. 35, 114 (2009).

    Article  ADS  Google Scholar 

  17. V. P. Grinin, A. O. Semenov, O. Yu. Barsunova, and S. G. Sergeev, Astrophysics 62, 41 (2019).

    Article  ADS  Google Scholar 

  18. L. Hartmann, R. Hewett, and N. Calvet, Astrophys. J. 426, 669 (1994).

    Article  ADS  Google Scholar 

  19. W. Herbst, J. A. Holtzman, and R. S. Klasky, Astron. J. 88, 1648 (1983).

    Article  ADS  Google Scholar 

  20. W. Herbst, D. K. Herbst, E. J. Grossman, and D. Weinstein, Astron. J. 108, 1906 (1994).

    Article  ADS  Google Scholar 

  21. A. Kreplin, D. Madlener, L. Chen, G. Weigelt, S. Kraus, V. Grinin, L. Tambovtseva, and M. Kishimoto, Astron. Astrophys. 590, A96 (2016).

    Article  ADS  Google Scholar 

  22. A. K. Kulkarni and M. M. Romanova, Mon. Not. R. Astron. Soc. 398, 701 (2009).

    Article  ADS  Google Scholar 

  23. R. A. Loomis, K. I. Oberg, S. M. Andrews, and M. A. MacGregor, Astrophys. J. 840, 23L (2017).

    Article  ADS  Google Scholar 

  24. P. T. McGinnis, S. H. P. Alencar, M. M. Guimarges, A. P. Sousa, J. Stauffer, J. Bouvier, L. Rebull, N. N. J. Fonseca, et al., Astron. Astrophys. 577, A11 (2015).

    Article  Google Scholar 

  25. J. Muzerolle, N. Calvet, and L. Hartmann, Astrophys. J. 550, 944 (2001).

    Article  ADS  Google Scholar 

  26. E. Nagel and J. Bouvier, arXiv:2010.05973v2 (2020).

  27. A. Natta and B. A. Whitney, Astron. Astrophys. 364, 633 (2000).

    ADS  Google Scholar 

  28. P. P. Petrov, Astrophysics 46, 506 (2003).

    Article  ADS  Google Scholar 

  29. P. P. Petrov, G. F. Gahm, and A. A. Djupvik, Astron. Astrophys. 577, 73P (2015).

    Article  Google Scholar 

  30. P. Pinilla, M. Tazzari, I. Pascucci, A. N. Youdin, A. Garufi, C. F. Manara, L. Testi, G. van der Plas, et al., Astrophys. J. 859, 32 (2018).

    Article  ADS  Google Scholar 

  31. A. F. Pugach, Astrophysics 17, 47 (1981).

    Article  ADS  Google Scholar 

  32. A. F. Pugach, Astron. Rep. 48, 470 (2004).

    Article  ADS  Google Scholar 

  33. J. E. Rodriguez, J. Pepper, K. G. Stassun, and G. Keivan, Astron. J. 146, 112 (2013).

    Article  ADS  Google Scholar 

  34. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, and R. V. E. Lovelace, Astrophys. J. 610, 920 (2004).

    Article  ADS  Google Scholar 

  35. A. N. Rostopchina, V. P. Grinin, A. Okazaki, P. S. The, S. Kikuchi, D. N. Shakhovskoy, and N. Kh. Minikhulov, Astron. Astrophys. 327, 145 (1997).

    ADS  Google Scholar 

  36. D. N. Shakhovskoi, A. N. Rostopchina, V. P. Grinin, and N. Kh. Minikulov, Astron. Rep. 47, 301 (2003).

    Article  ADS  Google Scholar 

  37. V. I. Shenavrin, P. P. Petrov, and K. N. Grankin, Inf. Bull. Var. Stars 6143, 1S (2015).

    Google Scholar 

  38. S. G. Shulman and V. P. Grinin, Astron. Lett. 45, 664 (2019).

    Article  ADS  Google Scholar 

  39. A. Sicilia-Aguilar, C. F. Manara, J. de Boer, M. Benisty, P. Pinilla, and J. Bouvier, Astron. Astrophys. 633, A37 (2020).

    Article  ADS  Google Scholar 

  40. T. Stolker, M. Sitko, B. Lazareff, M. Benisty, C. Dominik, R. Waters, M. Min, S. Perez, et al., Astrophys. J. 849, 143 (2017).

    Article  ADS  Google Scholar 

  41. L. V. Tambovtseva and V. P. Grinin, Astron. Lett. 34, 231 (2008).

    Article  ADS  Google Scholar 

  42. N. V. Voshchinnikov, V. P. Grinin, and V. V. Karjukin, Astron. Astrophys. 294, 547 (1995).

    ADS  Google Scholar 

  43. W. Wenzel, in Non-periodic Phenomena in Variable Stars, Proceedings of the IAU Colloquim No. 4, Ed. by L. Dutree (1969), p. 61.

  44. G. V. Zaitseva, Variable Stars 19, 63 (1973).

    ADS  Google Scholar 

  45. G. V. Zaitseva, Astrophysics 25, 626 (1986).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to K.N. Grankin, L.V. Tambovtseva, and P.P. Petrov for their useful remarks.

Funding

This work was supported by the Ministry of Science and Education of the Russian Federation (project no. 075-15-2020-780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Dmitriev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, D.V., Grinin, V.P. & Barsunova, O.Y. Color Indices of T Tauri Stars in Variable Circumstellar Extinction Models. Astron. Lett. 47, 19–27 (2021). https://doi.org/10.1134/S1063773721010035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773721010035

Keywords:

Navigation