Skip to main content
Log in

Aerodynamic wall shear fluctuation in sand-laden flow in a turbulent boundary layer

  • Regular Article - Flowing Matter
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

To improve our understanding on the aerodynamic wall shear fluctuation in particle-laden flow, we perform statistical and spectral analyses of aerodynamic wall shear fluctuation in sand-free and sand-laden flows in a turbulent boundary layer based on the results of a wind tunnel experiment. An increase in the skewness of the probability density function of aerodynamic wall shear fluctuation is found in the sand-laden flow. The turbulent intensity of aerodynamic wall shear stress increases rapidly with the sand mass flux. The decreased convective velocity indicates blocking effects of sand particles in the near-wall region. The power of aerodynamic wall shear fluctuation in the sand-laden flow increases at low frequencies corresponding to the duration of sand streamers. The results of a superstatistical analysis of skin friction velocity show that spatio-temporal fluctuation in the local energy dissipation rate is enhanced in the sand-laden flow. Finally, the local and spatio-drifting force acting on the stochastic system of wall shear fluctuation in sand-laden flow are different, providing a proof for the significant variation in flow condition caused by sand streamers near the wall

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. B. Grant, I. Marusic, Environ. Sci. Technol. 45, 7107 (2011)

    Article  ADS  Google Scholar 

  2. O. Durán, P. Claudin, B. Andreotti, Aeolian Res. 3, 243 (2011a)

    Article  ADS  Google Scholar 

  3. L. Prandtl, Motion of Fluids with Very Little Viscosity (In Verhaldlg III Int. Math, Kong, 1905)

    Google Scholar 

  4. H. Schlichting, K. Gersten, Boundary Layer Theory, 8th edn. (Springer, NY, 2000)

    Book  MATH  Google Scholar 

  5. P. Monkewitz, K. Chauhan, H. Nagib, Phys. Fluids 19, 115101 (2007)

    Article  ADS  Google Scholar 

  6. B. Khoo, Y. Chew, C. Teo, Exp. Fluids 31, 494 (2001)

    Article  Google Scholar 

  7. A. Smits, B. McKeon, I. Marusic, Annu. Rev. Fluid Mech. 43, 353 (2011a)

    Article  ADS  Google Scholar 

  8. R. Örlu, P. Schlatter, Phys. Fluids 23, 021704 (2011)

    Article  ADS  Google Scholar 

  9. J. Kok, N. Renno, AGU Fall Meet. Abstr. 43, 1 (2007)

    Google Scholar 

  10. P. Alfredsson, A. Johansson, J. Haritonidis, H. Eckelmann, Phys. Fluids 31, 1026 (1988)

    Article  ADS  Google Scholar 

  11. K. Colella, W. Keith, Exp. Fluids 34, 253 (2003)

    Article  Google Scholar 

  12. A. Wietrzak, R. Lueptow, J. Fluid Mech. 259, 191 (1994)

    Article  ADS  Google Scholar 

  13. W. Cook, AIAA J. 32(7), 1464 (1994)

    Article  ADS  Google Scholar 

  14. K. Sreenivasan, R. Antonia, J. Appl. Mech. 44(3), 389 (1977)

    Article  ADS  Google Scholar 

  15. Y. Chew, B. Khoo, G. Li, Exp. Fluids 17, 75 (1994)

    Article  ADS  Google Scholar 

  16. D. Shah, R. Antonia, AIAA J. 25, 22 (1987)

    Article  ADS  Google Scholar 

  17. J. Cardillo, Y. Chen, G. Araya, J. Newman, K. Jansen, L. Castillo, J. Fluid Mech. 729, 603 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  18. W. Hambleton, N. Hutchins, I. Marusic, J. Fluid Mech. 560, 53 (2006)

    Article  ADS  Google Scholar 

  19. N. Hutchins, I. Marusic, J. Fluid Mech. 579, 1 (2007a)

    Article  ADS  Google Scholar 

  20. N. Hutchins, I. Marusic, Philos. Trans. A Math. Phys. Eng. Sci. 365, 647–64 (2007b)

    Google Scholar 

  21. R. Mathis, J. Monty, N. Hutchins, I. Marusic, Phys. Fluids 21, 111703 (2009)

    Article  ADS  Google Scholar 

  22. D. Chung, B. McKeon, J. Fluid Mech. 661, 341 (2010)

    Article  ADS  Google Scholar 

  23. C. Beck, Physica D 193, 195 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Beck, E.G.D. Cohen, H.L. Swinney, Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 72, 056133 (2005)

    Article  ADS  Google Scholar 

  25. C. Beck, Rev. Lett. 98(6), 064502 (2007)

    Article  ADS  Google Scholar 

  26. H. Xu, N. Ouellette, E. Bodenschatz, Phys. Rev. Lett. 96(11), 114503 (2006)

    Article  ADS  Google Scholar 

  27. F. Comola, J. Kok, M. Chamecki, R. Martin, Geo. Res. Lett. 46, 13430 (2019)

    Article  ADS  Google Scholar 

  28. C. Jacob, W. Anderson, Bound-Lay. Meteorol. 162, 21 (2017)

    Article  ADS  Google Scholar 

  29. D. Richter, P. Sullivan, Phys. Fluids 26, 103304 (2014)

    Article  ADS  Google Scholar 

  30. S. Rana, W. Anderson, M. Day, Geophys. Res. Lett. 47, 088050 (2020)

    Article  Google Scholar 

  31. G. Li, J. Zhang, H.J. Herrmann, Y. Shao, N. Huang, Geophys. Res. Lett. 47, 086574 (2019)

    Google Scholar 

  32. R. Mathis, I. Marusic, S. Chernyshenko, N. Hutchins, J. Fluid Mech. 715, 163 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. B. Sun, B. Ma, P. Wang, L. Jian, C. Gao, Smart. Mater. Struct. 29, 3 (2020)

    Google Scholar 

  34. J. Zhang, Y. Shao, N. Huang, Atmos. Chem. Phys. 14, 8869 (2014)

    Article  ADS  Google Scholar 

  35. B. Sun, B. Ma, J. Luo, B. Li, C. Jiang, J. Deng, Sensor Actuat. A-Phys. 265, 217 (2017)

    Article  Google Scholar 

  36. B. Walter, C. Gromke, K. Leonard, A. Clifton, M. Lehning, J. Wind Eng. Ind. Aerodyn. 104–106, 314 (2012)

    Article  Google Scholar 

  37. N. Huang, X.J. Zheng, Y.H. Zhou, Adv. Eng. Softw. 37, 32 (2006)

    Article  Google Scholar 

  38. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, New York, 1941)

    Google Scholar 

  39. R. Kawamura, Study of sand movement by wind (University of California Hydraulics Engineering Laboratory Report HEL 2-8, Berkeley, 1965)

  40. O. Durán, V. Schwämmle, P.G. Lind, H.J. Herrmann, Nonlinear Proc. Geoph. 18, 455 (2011b)

    Article  ADS  Google Scholar 

  41. I. Marusic, W. Heuer, Phys. Rev. Lett. 99(11), 114501 (2007)

    Article  ADS  Google Scholar 

  42. J. Komminaho, M. Skote, Flow Turbul. Combust. 68, 167 (2002)

    Article  Google Scholar 

  43. J. Österlund, Experimental Studies of Zero Pressure-Gradient Turbulent Boundary Layer (KTH, Stockholm, 1999). ((PhD thesis)

  44. P. Schlatter, R. Örlü, J. Fluid Mech. 659, 116 (2010)

    Article  ADS  Google Scholar 

  45. E. Newland, Random Vibrations and Spectral Analysis, 2nd edn. (Longman, London, 1984)

    MATH  Google Scholar 

  46. A. Baas, D. Sherman, J. Geophys. Res.: Earth Surface 110, F03011 (2005)

    ADS  Google Scholar 

  47. S. Dupont, G. Bergametti, B. Marticorena, S. Simoens, J. Geophys. Res-Atmos. 118, 7109 (2013)

    Article  ADS  Google Scholar 

  48. J. Hunt, J. Morrison, Eur. J. Mech B-Fluid 19(5), 673 (2000)

    Article  Google Scholar 

  49. A. Hilgers, C. Beck, Phys. Rev. E 60, 5385 (1999)

    Article  ADS  Google Scholar 

  50. A. Hilgers, C. Beck, Physica D 156, 1 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  51. G. Lewis, H. Swinney, Phys. Rev. Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 59, 5457–67 (1999)

    Google Scholar 

  52. C. Beck, E. Cohen, Physica 322, 267 (2002)

    Article  Google Scholar 

  53. C. Beck, E. Cohen, H. Swinney, Phys. Rev. E 72, 056133 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the State Key Program of National Natural Science Foundation of China (41931179), the National Key Research and Development Program (2016YFC0500901), and the National Natural Foundation of China (11702163).

Author information

Authors and Affiliations

Authors

Contributions

NH and WH conceived the works of this paper. WH designed the experiment and collected the data. WH and JZ analyzed the results. All the authors participated in the experiment. All the authors were involved in the preparation of the manuscript. All the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Jie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, W., Huang, N. & Zhang, J. Aerodynamic wall shear fluctuation in sand-laden flow in a turbulent boundary layer. Eur. Phys. J. E 44, 38 (2021). https://doi.org/10.1140/epje/s10189-021-00029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-021-00029-6

Navigation