Skip to main content
Log in

Transport induced dimer state from topological corner states

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recently, a new type of second-order topological insulator has been theoretically proposed by introducing an in-plane Zeeman field into the Kane-Mele model in the two-dimensional honeycomb lattice. A pair of topological corner states arise at the corners with obtuse angles of an isolated diamond-shaped flake. To probe the corner states, we study their transport properties by attaching two leads to the system. Dressed by incoming electrons, the dynamic corner state is very different from its static counterpart. Resonant tunneling through the dressed corner state can occur by tuning the in-plane Zeeman field. At the resonance, the pair of spatially well separated and highly localized corner states can form a dimer state, whose wavefunction extends almost the entire bulk of the diamond-shaped flake. By varying the Zeeman field strength, multiple resonant tunneling events are mediated by the same dimer state. This re-entrance effect can be understood by a simple model. These findings extend our understanding of dynamic aspects of the second-order topological corner states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. L. Qi, and S. C. Zhang, Rev. Mod. Phys. 83, 1057 (2011), arXiv: 1008.2026.

    Article  ADS  Google Scholar 

  2. M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010), arXiv: 1002.3895.

    Article  ADS  Google Scholar 

  3. A. Bansil, H. Lin, and T. Das, Rev. Mod. Phys. 88, 021004 (2016), arXiv: 1603.03576.

    Article  ADS  Google Scholar 

  4. Y. Ren, Z. Qiao, and Q. Niu, Rep. Prog. Phys. 79, 066501 (2016), arXiv: 1509.09016.

    Article  ADS  Google Scholar 

  5. F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).

    Article  ADS  Google Scholar 

  6. X. L. Qi, Y. S. Wu, and S. C. Zhang, Phys. Rev. B 74, 085308 (2006), arXiv: cond-mat/0505308.

    Article  ADS  Google Scholar 

  7. R. Yu, W. Zhang, H. J. Zhang, S. C. Zhang, X. Dai, and Z. Fang, Science 329, 61 (2010), arXiv: 1002.0946.

    Article  ADS  Google Scholar 

  8. Z. Qiao, S. A. Yang, W. Feng, W. K. Tse, J. Ding, Y. Yao, J. Wang, and Q. Niu, Phys. Rev. B 82, 161414(R) (2010), arXiv: 1005.1672.

    Article  ADS  Google Scholar 

  9. C. Z. Chang, J. Zhang, X. Feng, J. Shen, Z. Zhang, M. Guo, K. Li, Y. Ou, P. Wei, L. L. Wang, Z. Q. Ji, Y. Feng, S. Ji, X. Chen, J. Jia, X. Dai, Z. Fang, S. C. Zhang, K. He, Y. Wang, L. Lu, X. C. Ma, and Q. K. Xue, Science 340, 167 (2013), arXiv: 1605.08829.

    Article  ADS  Google Scholar 

  10. Y. Ren, J. Zeng, K. Wang, F. Xu, and Z. Qiao, Phys. Rev. B 96, 155445 (2017), arXiv: 1708.02700.

    Article  ADS  Google Scholar 

  11. C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005), arXiv: cond-mat/0506581.

    Article  ADS  Google Scholar 

  12. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006), arXiv: cond-mat/0611399.

    Article  ADS  Google Scholar 

  13. A. Roth, C. Brune, H. Buhmann, L. W. Molenkamp, J. Maciejko, X. L. Qi, and S. C. Zhang, Science 325, 294 (2009), arXiv: 0905.0365.

    Article  ADS  Google Scholar 

  14. J. J. Qi, H. W. Liu, H. Jiang, and X. C. Xie, Sci. China-Phys. Mech. Astron. 59, 677811 (2016), arXiv: 1604.01194.

    Article  Google Scholar 

  15. D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007), arXiv: 0709.1274.

    Article  ADS  Google Scholar 

  16. I. Martin, Y. M. Blanter, and A. F. Morpurgo, Phys. Rev. Lett. 100, 036804 (2008), arXiv: 0709.3522.

    Article  ADS  Google Scholar 

  17. Z. Qiao, J. Jung, Q. Niu, and A. H. MacDonald, Nano Lett. 11, 3453 (2011), arXiv: 1107.4550.

    Article  ADS  Google Scholar 

  18. J. R. Anglin, and A. Schulz, Phys. Rev. B 95, 045430 (2017), arXiv: 1612.05126.

    Article  ADS  Google Scholar 

  19. J. Li, R. X. Zhang, Z. Yin, J. Zhang, K. Watanabe, T. Taniguchi, C. Liu, and J. Zhu, Science 362, 1149 (2018), arXiv: 1708.02311.

    Article  ADS  Google Scholar 

  20. T. Hou, G. Cheng, W. K. Tse, C. Zeng, and Z. Qiao, Phys. Rev. B 98, 245417 (2018), arXiv: 1809.04036.

    Article  ADS  Google Scholar 

  21. S. Cheng, H. Liu, H. Jiang, Q. F. Sun, and X. C. Xie, Phys. Rev. Lett. 121, 156801 (2018), arXiv: 1805.03846.

    Article  ADS  Google Scholar 

  22. Z. Qiao, J. Jung, C. Lin, Y. Ren, A. H. MacDonald, and Q. Niu, Phys. Rev. Lett. 112, 206601 (2014), arXiv: 1302.6307.

    Article  ADS  Google Scholar 

  23. J. Jung, F. Zhang, Z. Qiao, and A. H. MacDonald, Phys. Rev. B 84, 075418 (2011), arXiv: 1105.3666.

    Article  ADS  Google Scholar 

  24. Y. T. Zhang, Z. Qiao, and Q. F. Sun, Phys. Rev. B 87, 235405 (2013).

    Article  ADS  Google Scholar 

  25. X. Bi, J. Jung, and Z. Qiao, Phys. Rev. B 92, 235421 (2015), arXiv: 1509.09003.

    Article  ADS  Google Scholar 

  26. C. Lee, G. Kim, J. Jung, and H. Min, Phys. Rev. B 94, 125438 (2016), arXiv: 1607.01641.

    Article  ADS  Google Scholar 

  27. M. Kim, J. H. Choi, S. H. Lee, K. Watanabe, T. Taniguchi, S. H. Jhi, and H. J. Lee, Nat. Phys. 12, 1022 (2016).

    Article  Google Scholar 

  28. L. Ju, Z. Shi, N. Nair, Y. Lv, C. Jin, J. Velasco Jr, C. Ojeda-Aristizabal, H. A. Bechtel, M. C. Martin, A. Zettl, J. Analytis, and F. Wang, Nature 520, 650 (2015).

    Article  ADS  Google Scholar 

  29. F. Zhang, A. H. MacDonald, and E. J. Mele, Proc. Natl. Acad. Sci. 110, 10546 (2013), arXiv: 1301.4205.

    Article  ADS  Google Scholar 

  30. M. Yan, J. Lu, F. Li, W. Deng, X. Huang, J. Ma, and Z. Liu, Nat. Mater. 17, 993 (2018).

    Article  ADS  Google Scholar 

  31. J. Li, K. Wang, K. J. McFaul, Z. Zern, Y. Ren, K. Watanabe, T. Taniguchi, Z. Qiao, and J. Zhu, Nat. Nanotech. 11, 1060 (2016), arXiv: 1509.03912.

    Article  ADS  Google Scholar 

  32. L. Fu, Phys. Rev. Lett. 106, 106802 (2011), arXiv: 1010.1802.

    Article  ADS  Google Scholar 

  33. Y. Ando, and L. Fu, Annu. Rev. Condens. Matter Phys. 6, 361 (2015), arXiv: 1501.00531.

    Article  ADS  Google Scholar 

  34. C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016), arXiv: 1505.03535.

    Article  ADS  Google Scholar 

  35. Y. Xing, L. Zhang, and J. Wang, Phys. Rev. B 84, 035110 (2011), arXiv: 1109.2375.

    Article  ADS  Google Scholar 

  36. L. Zhang, J. Zhuang, Y. Xing, J. Li, J. Wang, and H. Guo, Phys. Rev. B 89, 245107 (2014).

    Article  ADS  Google Scholar 

  37. K. He, X. C. Ma, X. Chen, L. Lu, Y. Y. Wang, and Q. K. Xue, Chin. Phys. B 22, 067305 (2013).

    Article  ADS  Google Scholar 

  38. J. Wang, B. Lian, and S.-C. Zhang, Phys. Scr. 2015, 014003 (2015).

    Article  Google Scholar 

  39. H. Weng, R. Yu, X. Hu, X. Dai, and Z. Fang, Adv. Phys. 64, 227 (2015), arXiv: 1508.02967.

    Article  ADS  Google Scholar 

  40. C. X. Liu, S. C. Zhang, and X. L. Qi, Annu. Rev. Condens. Matter Phys. 7, 301 (2016).

    Article  ADS  Google Scholar 

  41. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Science 357, 61 (2017), arXiv: 1611.07987.

    Article  ADS  Google Scholar 

  42. W. A. Benalcazar, B. A. Bernevig, and T. L. Hughes, Phys. Rev. B 96, 245115 (2017), arXiv: 1708.04230.

    Article  ADS  Google Scholar 

  43. E. Khalaf, Phys. Rev. B 97, 205136 (2018), arXiv: 1801.10050.

    Article  ADS  Google Scholar 

  44. M. Serra-Garcia, R. Süsstrunk, and S. D. Huber, Phys. Rev. B 99, 020304(R) (2019).

    Article  ADS  Google Scholar 

  45. R. Chen, C. Z. Chen, J. H. Gao, B. Zhou, and D. H. Xu, Phys. Rev. Lett. 124, 036803 (2020), arXiv: 1904.09932.

    Article  ADS  MathSciNet  Google Scholar 

  46. H. Hu, B. Huang, E. Zhao, and W. V. Liu, Phys. Rev. Lett. 124, 057001 (2020), arXiv: 1905.03727.

    Article  ADS  Google Scholar 

  47. B. Huang, and W. V. Liu, Phys. Rev. Lett. 124, 216601 (2020), arXiv: 1811.00555.

    Article  ADS  Google Scholar 

  48. F. Schindler, M. Brzezińska, W. A. Benalcazar, M. Iraola, A. Bouhon, S. S. Tsirkin, M. G. Vergniory, and T. Neupert, Phys. Rev. Res. 1, 033074 (2019), arXiv: 1907.10607.

    Article  Google Scholar 

  49. J. Langbehn, Y. Peng, L. Trifunovic, F. von Oppen, and P. W. Brouwer, Phys. Rev. Lett. 119, 246401 (2017), arXiv: 1708.03640.

    Article  ADS  Google Scholar 

  50. Z. Song, Z. Fang, and C. Fang, Phys. Rev. Lett. 119, 246402 (2017), arXiv: 1708.02952.

    Article  ADS  Google Scholar 

  51. G. van Miert, and C. Ortix, Phys. Rev. B 98, 081110(R) (2018), arXiv: 1806.04023.

    Article  ADS  Google Scholar 

  52. F. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. S. P. Parkin, B. A. Bernevig, and T. Neupert, Sci. Adv. 4, eaat0346 (2018), arXiv: 1708.03636.

    Article  ADS  Google Scholar 

  53. M. Ezawa, Phys. Rev. B 98, 045125 (2018), arXiv: 1801.00437.

    Article  ADS  Google Scholar 

  54. X. L. Sheng, C. Chen, H. Liu, Z. Chen, Z. M. Yu, Y. X. Zhao, and S. A. Yang, Phys. Rev. Lett. 123, 256402 (2019), arXiv: 1904.09985.

    Article  ADS  Google Scholar 

  55. M. J. Park, Y. Kim, G. Y. Cho, and S. B. Lee, Phys. Rev. Lett. 123, 216803 (2019).

    Article  ADS  Google Scholar 

  56. M. Ezawa, Phys. Rev. Lett. 120, 026801 (2018), arXiv: 1709.08425.

    Article  ADS  Google Scholar 

  57. W. A. Benalcazar, T. Li, and T. L. Hughes, Phys. Rev. B 99, 245151 (2019), arXiv: 1809.02142.

    Article  ADS  Google Scholar 

  58. Q. B. Zeng, Y. B. Yang, and Y. Xu, Phys. Rev. B 101, 241104(R) (2020), arXiv: 1911.10816.

    Article  ADS  Google Scholar 

  59. T. Li, P. Zhu, W. A. Benalcazar, and T. L. Hughes, Phys. Rev. B 101, 115115 (2020), arXiv: 1906.02752.

    Article  ADS  Google Scholar 

  60. F. Schindler, Z. Wang, M. G. Vergniory, A. M. Cook, A. Murani, S. Sengupta, A. Y. Kasumov, R. Deblock, S. Jeon, I. Drozdov, H. Bouchiat, S. Guéron, A. Yazdani, B. A. Bernevig, and T. Neupert, Nat. Phys. 14, 918 (2018), arXiv: 1802.02585.

    Article  Google Scholar 

  61. Y. B. Choi, Y. Xie, C. Z. Chen, J. Park, S. B. Song, J. Yoon, B. J. Kim, T. Taniguchi, K. Watanabe, J. Kim, K. C. Fong, M. N. Ali, K. T. Law, and G. H. Lee, Nat. Mater. 19, 974 (2020), arXiv: 1909.02537.

    Article  ADS  Google Scholar 

  62. B. Liu, G. Zhao, Z. Liu, and Z. F. Wang, Nano Lett. 19, 6492 (2019).

    Article  ADS  Google Scholar 

  63. Y. Yang, Z. Jia, Y. Wu, R. C. Xiao, Z. H. Hang, H. Jiang, and X. C. Xie, Sci. Bull. 65, 531 (2020), arXiv: 1903.01816.

    Article  Google Scholar 

  64. E. Lee, R. Kim, J. Ahn, and B. J. Yang, npj Quantum Mater. 5, 1 (2020), arXiv: 1904.11452.

    Article  ADS  Google Scholar 

  65. C. Chen, Z. Song, J. Z. Zhao, Z. Chen, Z. M. Yu, X. L. Sheng, and S. A. Yang, Phys. Rev. Lett. 125, 056402 (2020), arXiv: 2004.02787.

    Article  ADS  Google Scholar 

  66. Y. Ren, Z. Qiao, and Q. Niu, Phys. Rev. Lett. 124, 166804 (2020), arXiv: 2003.09936.

    Article  ADS  Google Scholar 

  67. M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, J. Phys. F-Met. Phys. 14, 1205 (1984).

    Article  ADS  Google Scholar 

  68. J. Wang, and H. Guo, Phys. Rev. B 79, 045119 (2009).

    Article  ADS  Google Scholar 

  69. F. Xu, and J. Wang, Phys. Rev. B 84, 024205 (2011), arXiv: 1101.3155.

    Article  ADS  Google Scholar 

  70. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, UK, 1997), p. 141.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fuming Xu or Jian Wang.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant No. 12034014), the Natural Science Foundation of Guangdong Province (Grant No. 2020A1515011418), and the Natural Science Foundation of Shenzhen (Grant Nos. JCYJ20190808152801642, and JCYJ20190808150409413).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, KT., Ren, Y., Xu, F. et al. Transport induced dimer state from topological corner states. Sci. China Phys. Mech. Astron. 64, 257811 (2021). https://doi.org/10.1007/s11433-020-1677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1677-9

Keywords

Navigation