Skip to main content
Log in

Approximations for the complete elliptic integral of the second \(\hbox {Kind}\)

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this paper, we present the best possible parameters \(\alpha _{1}\), \(\alpha _{2}\), \(\alpha _{3}\), \(\alpha _{4}\), \(\beta _{1}\), \(\beta _{2}\), \(\beta _{3}\), \(\beta _{4} \in {\mathbb {R}}\) such that

$$\begin{aligned} \frac{\alpha _{1}}{H(x, y)}+\frac{1-\alpha _{1}}{L(x, y)}&<\frac{1}{V(x, y)}<\frac{\beta _{1}}{H(x, y)}+\frac{1-\beta _{1}}{L(x, y)},\\ \frac{\alpha _{2}}{H(x, y)}+\frac{1-\alpha _{2}}{P(x, y)}&<\frac{1}{V(x, y)}<\frac{\beta _{2}}{H(x, y)}+\frac{1-\beta _{2}}{P(x, y)},\\ \frac{\alpha _{3}}{H(x, y)}+\frac{1-\alpha _{3}}{N S(x, y)}&<\frac{1}{V(x, y)}<\frac{\beta _{3}}{H(x, y)}+\frac{1-\beta _{3}}{N S(x, y)},\\ \frac{\alpha _{4}}{H(x, y)}+\frac{1-\alpha _{4}}{T(x, y)}&<\frac{1}{V(x, y)}<\frac{\beta _{4}}{H(x, y)}+\frac{1-\beta _{4}}{T(x, y)} \end{aligned}$$

hold for all \(x, y>0\) with \(x \ne y\), where H(xy), G(xy), L(xy), A(xy), NS(xy), P(xy) and T(xy) are respectively the harmonic, geometric, logarithmic, arithmetic, Neuman-Sándor, and first and second Seiffert means of two distinct positive numbers x and y, and

$$\begin{aligned} V(x,y)=\pi G^{2}(x, y) /\left[ 2\int _{0}^{\pi /2}\sqrt{A^{2}(x,y) \cos ^{2}\varphi +G^{2}(x,y)\sin ^{2}\varphi }d\varphi \right] \end{aligned}$$

is a new Seiffert-like mean. As applications, some new inequalities for the complete elliptic integral of the second kind are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington (1964)

    MATH  Google Scholar 

  2. Alzer, H.: Sharp inequalities for the complete elliptic integral of the first kind. Math. Proc. Camb. Philos. Soc. 124(2), 309–314 (1998)

    Article  MathSciNet  Google Scholar 

  3. Alzer, H., Qiu, S.-L.: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289–312 (2004)

    Article  MathSciNet  Google Scholar 

  4. Anderson, G.D., Qiu, S.-L., Vamanamurthy, M.K.: Elliptic integral inequalities, with applications. Constr. Approx. 14(2), 195–207 (1998)

    Article  MathSciNet  Google Scholar 

  5. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)

    MATH  Google Scholar 

  6. Barnard, R.W., Pearce, K., Richards, K.C.: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31(3), 693–699 (2000)

    Article  MathSciNet  Google Scholar 

  7. Chu, Y.-M., Qiu, S.-L., Wang, M.-K.: Sharp inequalities involving the power mean and complete ellipitc integral of the first kind. Rocky Mt. J. Math. 43(5), 1489–1496 (2013)

    Article  Google Scholar 

  8. Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Sharp generalized Seiffert mean bounds for Toader mean. Abstr. Appl. Anal. 2011, 605259 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

    Article  MathSciNet  Google Scholar 

  11. He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor–Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 2627–2638 (2019)

    Article  MathSciNet  Google Scholar 

  12. Huang, T.-R., Qiu, S.-L., Ma, X.-Y.: Monotonicity properties and inequalities for the generalized elliptic integral of the first kind. J. Math. Anal. Appl. 469(1), 95–116 (2019)

    Article  MathSciNet  Google Scholar 

  13. Li, J.-F., Qian, W.-M., Chu, Y.-M.: Sharp bounds for Toader mean in terms of arithmetic, quadratic, and Neuman means. J. Inequal. Appl. 2015, 277 (2015)

    Article  MathSciNet  Google Scholar 

  14. Neuman, E., Sándor, J.: On the Schwab–Borchardt mean. Math. Pannon. 14(2), 253–266 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, 274 (2017)

    Article  MathSciNet  Google Scholar 

  16. Qian, W.-M., He, Z.-Y., Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(2), 57 (2020)

    Article  MathSciNet  Google Scholar 

  17. Qian, W.-M., Zhang, W., Chu, Y.-M.: Optimal bounds for a Toader type mean using arithmetic and geometric means. J. Comput. Anal. Appl. 28(3), 560–566 (2020)

    Google Scholar 

  18. Rainville, E.D.: Special Functions. Chelsea Publishing Company, New York (1960)

    MATH  Google Scholar 

  19. Sándor, J.: On certain inequalities for means. J. Math. Anal. Appl. 189(2), 602–606 (1995)

    Article  MathSciNet  Google Scholar 

  20. Toader, Gh.: Some mean values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218(2), 358–368 (1998)

  21. Vamanamurthy, M.K., Vuorinen, M.: Inequalities for means. J. Math. Anal. Appl. 183(1), 155–166 (1994)

    Article  MathSciNet  Google Scholar 

  22. Vuorinen, M.: Hypergeometric functions in geometric function theory. In: Special Functions and Differential Equations, Proceedings of a Workshop held at The Institute of Mathematical Sciences, Madras, India, January 13–24, 1997, Allied Publ., New Delhi, pp. 119–126 (1998)

  23. Wang, M.-K., Chu, Y.-M.: Asymptotical bounds for complete elliptic integrals of the second kind. J. Math. Anal. Appl. 402(1), 119–126 (2013)

    Article  MathSciNet  Google Scholar 

  24. Wang, M.-K., Chu, Y.-M., Li, Y.-M., Zhang, W.: Asymptotic expansion and bounds for complete elliptic integrals. Math. Inequal. Appl. 23(3), 821–841 (2020)

    MathSciNet  MATH  Google Scholar 

  25. Wang, M.-K., Chu, Y.-M., Jiang, Y.-P., Qiu, S.-L.: Bounds of the perimeter of an ellipse using arithmetic, geometric and harmonic means. Math. Inequal. Appl. 17(1), 101–111 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Wang, M.-K., Chu, Y.-M., Qiu, Y.-F., Qiu, S.-L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011)

    Article  MathSciNet  Google Scholar 

  27. Wang, M.-K., He, Z.-Y., Chu, Y.-M.: Sharp power mean inequalities for the generalized elliptic integral of the first kind. Comput. Methods Funct. Theory 20, 111–124 (2020)

    Article  MathSciNet  Google Scholar 

  28. Wang, M.-K., Qiu, Y.-F., Chu, Y.-M.: Sharp bounds for Seiffert means in terms of Lehmer means. J. Math. Inequal. 4(4), 581–586 (2010)

    Article  MathSciNet  Google Scholar 

  29. Witkowski, A.: On Seiffert-like means. J. Math. Inequal. 9(4), 1071–1092 (2015)

    Article  MathSciNet  Google Scholar 

  30. Yang, Zh.-H., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)

  31. Yang, Zh.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018)

  32. Yang, Zh.-H., Qian, W.-M., Zhang, W., Chu, Y.-M.: Notes on the complete elliptic integral of the first kind. Math. Inequal. Appl. 23(1), 77–93 (2020)

  33. Yang, Zh.-H., Tian, J.-F.: Convexity and monotonicity for elliptic integrals of the first kind and applications. Appl. Anal. Discrete. Math. 13(1), 240–260 (2019)

  34. Yang, Zh.-H., Tian, J.-F., Wang, M.-K.: A positive answer to Bhatia–Li conjecture on the monotonicity for a new mean in its parameter. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(3), 126 (2020)

  35. Yang, Zh.-H., Tian, J.-F., Zhu, Y.R.: A sharp lower bound for the complete elliptic integrals of the first kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(1), 8 (2021)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao-Kun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Natural Science Foundation of China (11701176, 61673169, 11301127), and the Natural Science Foundation of Zhejiang Province (Grant YL19A010012).and the Key Project of the Scientific Research of Zhejiang Open University in 2019 (Grant no XKT-19Z02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, WM., Wang, MK., Xu, HZ. et al. Approximations for the complete elliptic integral of the second \(\hbox {Kind}\). RACSAM 115, 88 (2021). https://doi.org/10.1007/s13398-021-01031-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01031-5

Keywords

Mathematics Subject Classification

Navigation