Skip to main content
Log in

Continued Functions and Perturbation Series: Simple Tools for Convergence of Diverging Series in O(n)-Symmetric \(\phi ^4\) Field Theory at Weak Coupling Limit

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We determine universal critical exponents that describe the continuous phase transitions in different dimensions of space. We use continued functions without any external unknown parameters to obtain analytic continuation for the recently derived 7-loop weak coupling \(\epsilon \)-expansions from O(n)-symmetric \(\phi ^4\) field theory. Employing a new blended continued function, we obtain critical exponent \(\alpha =-0.0121(22)\) for the phase transition of superfluid helium which matches closely with the most accurate experimental value. This result addresses the long-standing discrepancy between the theoretical predictions and precise experimental result of O(2) \(\phi ^4\) model known as ”\(\lambda \)-point specific heat experimental anomaly”. Further we have also examined the applicability of such continued functions in other examples of field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Wilson, K.G., Kogut, J.B.: The Renormalization group and the epsilon expansion. Phys. Rept. 12, 75–199 (1974)

    Article  ADS  Google Scholar 

  2. Kardar, M.: Statistical Physics of Fields. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  3. Baker, G.A., Graves-Morris, P.: Padé Approximants, 2nd edn. Cambridge University Press, Encyclopedia of Mathematics and its Applications (1996)

  4. Kleinert, H., Schulte-Frohlinde, V.: Critical Properties of \(\phi ^4\)-Theories. World Scientific, New York (2001)

    MATH  Google Scholar 

  5. Gorishny, S., Larin, S., Tkachov, F.: \(\epsilon \)-expansion for critical exponents: The o(\(\epsilon ^5\)) approximation. Phys. Lett. A 101(3), 120–123 (1984)

    Article  ADS  Google Scholar 

  6. Le Guillou, J.C., Zinn-Justin, J.: Accurate critical exponents from the \(\epsilon \) expansion. J. Phys. Lett. 46(4), 137–141 (1985)

    Article  Google Scholar 

  7. Yukalov, V.I., Gluzman, S.: Self similar exponential approximants. Phys. Rev. E 58, 1359–1382 (1998)

    Article  ADS  Google Scholar 

  8. Yukalov, V.I.: Interplay between Approximation Theory and Renormalization Group. Phys. Particles Nuclei 50(2), 141–209 (2019)

    Article  ADS  Google Scholar 

  9. Bender, C., Orszag, S.: Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer, Advanced Mathematical Methods for Scientists and Engineers (1999)

    Book  MATH  Google Scholar 

  10. Bender, C.M., Vinson, J.P.: Summation of power series by continued exponentials. Journal of Mathematical Physics 37(8), 4103–4119 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Poland, D.: Summation of series in statistical mechanics by continued exponentials. Physica A 250(1), 394–422 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  12. Euler, L.: “De formulis exponentialibus replicatis,” Acta Acad. Petropolitanae, no. 1, pp. 38–60, (1777)

  13. Lorentzen, L.: “Padé approximation and continued fractions,” Applied Numerical Mathematics, vol. 60, no. 12, pp. 1364 – 1370, 2010. Approximation and extrapolation of convergent and divergent sequences and series (CIRM, Luminy - France, 2009)

  14. Shanks, D.: Non-linear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34(1–4), 1–42 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  15. Andrews, G.E., Goulden, I.P., Jackson, D.M.: Shanks’ convergence acceleration transform, padé approximants and partitions. Journal of Combinatorial Theory, Series A 43(1), 70–84 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Caliceti, E., Meyer-Hermann, M., Ribeca, P., Surzhykov, A., Jentschura, U.: From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep. 446(1), 1–96 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  17. Vasilev, A.N.: The field theoretic renormalization group in critical behavior theory and stochastic dynamics. Chapman and Hall/CRC, Boca Raton, USA (2004)

    Book  Google Scholar 

  18. Espíndola, R., García, J.A.: Cusp anomalous dimension and rotating open strings in ads/cft. J. High Energy Phys. 2018(3), 116 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Schwinger, J.: Gauge Invariance and Mass. II. Phys. Rev. 128, 2425–2429 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Lowenstein, J., Swieca, J.: Quantum electrodynamics in two dimensions. Ann. Phys. 68(1), 172–195 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  21. Landau, L.D.: On the theory of phase transitions. Zh. Eksp. Teor. Fiz. 7, 19–32 (1937)

    Google Scholar 

  22. Landau, L. D.: [Ukr. J. Phys. 53, p. 25 (2008)]

  23. Shalaby, A.M.: Precise critical exponents of the \(o(n)\)-symmetric quantum field model using hypergeometric-meijer resummation. Phys. Rev. D 101, 105006 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  24. Shalaby, A. M.: “Critical exponents of the o(n)-symmetric \(\phi ^4\) model from the \(\epsilon ^7\) hypergeometric-meijer resummation,” arXiv: 2005.12714, 2020

  25. Mera, H., Pedersen, T.G., Nikolić, B.K.: Nonperturbative quantum physics from low-order perturbation theory. Phys. Rev. Lett. 115, 143001 (2015)

    Article  ADS  Google Scholar 

  26. Vleck, E.B.V.: On the convergence of the continued fraction of Gauss and other continued fractions. Ann. Math. 3(1/4), 1–18 (1901)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yukalov, V.I.: Method of self-similar approximations. Journal of Mathematical Physics 32(5), 1235–1239 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Yukalov, V.I.: Statistical mechanics of strongly nonideal systems. Phys. Rev. A 42, 3324–3334 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  29. Yukalov, V.: Self-semilar approximations for strongly interacting systems. Physica A 167(3), 833–860 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  30. Yukalov, V.I.: Stability conditions for method of self-similar approximations. Journal of Mathematical Physics 33(12), 3994–4001 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Yukalov, V., Yukalova, E.: “Self-similar structures and fractal transforms in approximation theory,” Chaos, Solitons and Fractals, vol. 14, no. 6, pp. 839 – 861, 2002. Fractal Geometry in Quantum Physics

  32. Kleinert, H., Neu, J., Schulte-Frohlinde, V., Chetyrkin, K. G., Larin, S. A.: “Five loop renormalization group functions of O(n) symmetric \(\phi ^4\) theory and epsilon expansions of critical exponents up to \(\epsilon ^5\),” Phys. Lett., vol. B 272, pp. 39–44 (1991). [Erratum: Phys. Lett.B 319, 545 (1993)]

  33. Hasenbusch, M.: Monte carlo study of an improved clock model in three dimensions. Phys. Rev. B 100, 224517 (2019)

    Article  ADS  Google Scholar 

  34. De Polsi, G., Balog, I., Tissier, M., Wschebor, N.: Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group. Phys. Rev. E 101, 042113 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Chester, S.M., Landry, W., Liu, J., Poland, D., Simmons-Duffin, D., Su, N., Vichi, A.: Carving out ope space and precise \(O(2)\) model critical exponents. J. High Energy Phys. 2020(6), 142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shalaby, A.M.: \(\lambda \)-point anomaly in view of the seven-loop hypergeometric resummation for the critical exponent \(\nu \) of the \(O(2)\)\(\phi ^{4}\) model. Phys. Rev. D 102, 105017 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  37. Lipa, J.A., Nissen, J.A., Stricker, D.A., Swanson, D.R., Chui, T.C.P.: Specific heat of liquid helium in zero gravity very near the lambda point. Phys. Rev. B 68, 174518 (2003)

    Article  ADS  Google Scholar 

  38. Kompaniets, M.V., Panzer, E.: Minimally subtracted six-loop renormalization of \(o(n)\)-symmetric \({\phi }^{4}\) theory and critical exponents. Phys. Rev. D 96, 036016 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  39. Calabrese, P., Caselle, M., Celi, A., Pelissetto, A., Vicari, E.: Non-analyticity of the callan-symanzik \(\beta \)-function of two-dimensional o(n) models. J. Phys. A: Math. Gen. 33(46), 8155–8170 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Oleaga, A., Salazar, A., Bunkov, Y.M.: 3d-XY critical behavior of CsMnF\({}_3\) from static and dynamic thermal properties. J. Phys.: Condens. Matter 26(9), 096001 (2014)

    Google Scholar 

  41. Oleaga, A., Salazar, A., Prabhakaran, D., Cheng, J.-G., Zhou, J.-S.: Critical behavior of the paramagnetic to antiferromagnetic transition in orthorhombic and hexagonal phases of \({R}\)MnO\({}_{3}\) (\({R=\rm Sm}\), Tb, Dy, Ho, Er, Tm, Yb, Lu, Y). Phys. Rev. B 85, 184425 (2012)

    Article  ADS  Google Scholar 

  42. Reisser, R., Kremer, R., Simon, A.: 3d-xy critical behavior of the layered metal-rich halides Gd\({}_2\)IFe\({}_2\), Gd\({}_2\)ICo\({}_2\) and Gd\({}_2\)BrFe\({}_2\). Physica B 204(1), 265–273 (1995)

    Article  ADS  Google Scholar 

  43. Reisser, R., Kremer, R.K., Simon, A.: Magnetic phase transition in the metal-rich rare-earth carbide halides Gd\({}_{2}\)XC (X= Br, I). Phys. Rev. B 52, 3546–3554 (1995)

    Article  ADS  Google Scholar 

  44. Kompaniets, M., Wiese, K.J.: Fractal dimension of critical curves in the \(o(n)\)-symmetric \({\phi }^{4}\) model and crossover exponent at 6-loop order: Loop-erased random walks, self-avoiding walks, Ising, \(XY\), and Heisenberg models. Phys. Rev. E 101, 012104 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  45. El-Showk, S., Paulos, M.F., Poland, D., Rychkov, S., Simmons-Duffin, D., Vichi, A.: Solving the 3d Ising model with the conformal bootstrap ii. \(c\)-minimization and precise critical exponents. Journal of Statistical Physics 157(4), 869–914 (2014)

  46. Echeverri, A.C., von Harling, B., Serone, M.: The effective bootstrap. J. High Energy Phys. 2016(9), 97 (2016)

    Article  Google Scholar 

  47. Kos, F., Poland, D., Simmons-Duffin, D., Vichi, A.: Precision islands in the Ising and O(N) models. J. High Energy Phys. 2016(8), 36 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shimada, H., Hikami, S.: Fractal dimensions of self-avoiding walks and ising high-temperature graphs in 3d conformal bootstrap. J. Stat. Phys. 165(6), 1006–1035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Hasenbusch, M.: Finite size scaling study of lattice models in the three-dimensional ising universality class. Phys. Rev. B 82, 174433 (2010)

    Article  ADS  Google Scholar 

  50. Clisby, N.: Scale-free monte carlo method for calculating the critical exponent\(\gamma \) of self-avoiding walks. J. Phys. A: Math. Theor. 50(26), 264003 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Hasenbusch, M.: Eliminating leading corrections to scaling in the three-dimensional O(N)-symmetric \(\phi ^4\) model: N= 3 and 4. J. Phys. A: Math. Gen. 34(40), 8221–8236 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Hasenbusch, M.: Monte carlo study of a generalized icosahedral model on the simple cubic lattice. Phys. Rev. B 102, 024406 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  53. Kleinert, H., Yukalov, V.I.: Self-similar variational perturbation theory for critical exponents. Phys. Rev. E 71, 026131 (2005)

    Article  ADS  Google Scholar 

  54. Antonenko, S.A., Sokolov, A.I.: Critical exponents for a three-dimensional o(n)-symmetric model with n\(>\)3. Phys. Rev. E 51, 1894–1898 (1995)

  55. Sokolov, A.I.: Universal effective coupling constants for the generalized Heisenberg model. Phys. Solid State 40(7), 1169–1174 (1998)

    Article  ADS  Google Scholar 

  56. Martinelli, G., Parisi, G.: A systematical improvement of the Migdal recursion formula. Nucl. Phys. B 180(2), 201–220 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  57. Caracciolo, S.: Improved Migdal recursion formula for the Ising model in two dimensions on a triangular lattice. Nucl. Phys. B 180(3), 405–416 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  58. Bonnier, B., Leroyer, Y., Meyers, C.: Real-space renormalization-group study of fractal Ising models. Phys. Rev. B 37, 5205–5210 (1988)

    Article  ADS  Google Scholar 

  59. Gefen, Y., Mandelbrot, B.B., Aharony, A.: Critical phenomena on fractal lattices. Phys. Rev. Lett. 45, 855–858 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  60. Gefen, Y., Aharony, A., Mandelbrot, B.B.: Phase transitions on fractals. III. infinitely ramified lattices. J. Phys. A 17(6), 1277–1289 (1984)

  61. Bab, M., Fabricius, G., Albano, E.: Critical exponents of the Ising model on low-dimensional fractal media. Physica A 388(4), 370–378 (2009)

    Article  ADS  Google Scholar 

  62. Monceau, P., Perreau, M.: Critical behavior of the Ising model on fractal structures in dimensions between one and two: Finite-size scaling effects. Phys. Rev. B 63, 184420 (2001)

    Article  ADS  Google Scholar 

  63. Holovatch, Y.: Critical exponents of Ising-like systems in general dimensions. Theor. Math. Phys. 96(3), 1099–1109 (1993)

    Article  MathSciNet  Google Scholar 

  64. Holovatch, Y.: Renormalization group study of the m-vector model between two and four dimensions. Ferroelectrics 192(1), 55–59 (1997)

    Article  Google Scholar 

  65. Guillou, J. L., Justin, J. Z.: “Accurate critical exponents for Ising like systems in non-integer dimensions,” in Large-Order Behaviour of Perturbation Theory (J. L. GUILLOU and J. ZINN-JUSTIN, eds.), vol. 7 of Current Physics–Sources and Comments, pp. 559 – 564, Elsevier, (1990)

  66. Bonnier, B., Hontebeyrie, M.: Critical properties of the d-dimensional Ising model from a variational method. J. Phys. I 1(3), 331–338 (1991)

    Google Scholar 

  67. Banks, T., Torres, T. J.: “Two Point Pade Approximants and Duality,” arXiv:1307.3689 (2013)

  68. Yukalov, V.I., Gluzman, S.: Self-similar interpolation in high-energy physics. Phys. Rev. D 91, 125023 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  69. Gubser, S., Klebanov, I., Polyakov, A.: A semi-classical limit of the gauge/string correspondence. Nucl. Phys. B 636(1), 99–114 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Frolov, S., Tseytlin, A.A.: Semiclassical quantization of rotating superstring in \(\text{ AdS}_5 \times \text{ S}^5\). J. High Energy Phys. 2002(06), 007–007 (2002)

    Article  Google Scholar 

  71. Beisert, N., Eden, B., Staudacher, M.: Transcendentality and crossing. J. Stat. Mech: Theory Exp. 2007(01), P01021–P01021 (2007)

    Article  MATH  Google Scholar 

  72. Coleman, S., Jackiw, R., Susskind, L.: Charge shielding and quark confinement in the massive Schwinger model. Ann. Phys. 93(1), 267–275 (1975)

    Article  ADS  Google Scholar 

  73. Coleman, S.: More about the massive Schwinger model. Ann. Phys. 101(1), 239–267 (1976)

    Article  ADS  Google Scholar 

  74. Casher, A., Kogut, J., Susskind, L.: Vacuum polarization and the absence of free quarks. Phys. Rev. D 10, 732–745 (1974)

    Article  ADS  Google Scholar 

  75. Banks, T., Susskind, L., Kogut, J.: Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises. Phys. Rev. D 13, 1043–1053 (1976)

    Article  ADS  Google Scholar 

  76. Carroll, A., Kogut, J., Sinclair, D.K., Susskind, L.: Lattice gauge theory calculations in 1 + 1 dimensions and the approach to the continuum limit. Phys. Rev. D 13, 2270–2277 (1976)

    Article  ADS  Google Scholar 

  77. Hamer, C.J., Weihong, Z., Oitmaa, J.: Series expansions for the massive Schwinger model in hamiltonian lattice theory. Phys. Rev. D 56, 55–67 (1997)

    Article  ADS  Google Scholar 

  78. Kröger, H., Scheu, N.: The massive Schwinger model - a hamiltonian lattice study in a fast moving frame. Phys. Lett. B 429(1), 58–63 (1998)

    Article  ADS  Google Scholar 

  79. Byrnes, T.M.R., Sriganesh, P., Bursill, R.J., Hamer, C.J.: Density matrix renormalization group approach to the massive Schwinger model. Phys. Rev. D 66, 013002 (2002)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkat Abhignan.

Additional information

Communicated by Mehran Kardar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

6. Appendix

6. Appendix

Table 2 Critical exponents \(\nu \), \(\alpha \), \(\omega \), \(\gamma \) and \(\beta \) compared with literature for \(d=3\), \(0\le n \le 3\)
Table 3 Critical exponents \(\nu \), \(\alpha \), \(\omega \), \(\gamma \) and \(\beta \) compared with other theoretical results for \(d=3\), \(n=-2\) and \(n>3\). CE values denoted by superscript\(^\#\) and CEF values denoted by superscript\(^*\)
Table 4 Critical exponents \(\nu \) and \(\gamma \) for Ising model on fractal lattice with \(n=1\) for \(d<2\) compared with literature
Table 5 Critical exponents \(\nu \) and \(\gamma \) for non-integer dimensions with \(n=1\) compared with literature
Table 6 Critical exponents \(\nu \) and \(\gamma \) for non-integer dimensions compared with literature. CE values denoted by superscript\(^\#\) and CEF values denoted by superscript\(^*\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abhignan, V., Sankaranarayanan, R. Continued Functions and Perturbation Series: Simple Tools for Convergence of Diverging Series in O(n)-Symmetric \(\phi ^4\) Field Theory at Weak Coupling Limit. J Stat Phys 183, 4 (2021). https://doi.org/10.1007/s10955-021-02719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10955-021-02719-z

Keywords

Navigation