Skip to main content
Log in

Heating of a Local Region of a Branching Streamer as a Starting Point of a Space Leader and a Negative-Leader Step

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Localized plasma formations called space leaders are observed in streamer coronas of negative leaders of long laboratory sparks. The main leader completes a step when the space leader comes into contact with the head of the main leader. In the present work, we discuss the creation mechanism of local plasma formations (henceforth, generally, referred to as the hot spots) that are able to initiate a space leader. It is assumed that spontaneous increase in the conductivity in a local region of one of the streamers of the main leader corona initiates two secondary coronas from the ends of this region. The corona current warms up the region, leading to formation of the hot spot, provided that the magnitude of the field in the heated region is sufficiently high. Finally, hot spots grow into the space leader with further increase in the temperature and conductivity. The necessary condition for achieving the temperature of ≈2000 K in the hot spot within the observation time of tobs ≤ 1 µs is the magnitude of the ambient electric field strength E0 = 20 kV cm–1 that is almost twice higher than the average magnitude of the electric field strength of ≈11 kV cm–1 in a negative corona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1987; Springer-Verlag, Berlin, 1991).

  2. E. M. Bazelyan and Yu. P. Raizer, Spark Discharge (MFTI, Moscow, 1997; CRC, Boca Raton, 1998).

  3. E. M. Bazelyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (IOP, Bristol, 2000).

    Book  Google Scholar 

  4. V. A. Rakov and M. A. Uman, Lightning: Physics and Effects (Cambridge University Press, Cambridge, 2003).

    Book  Google Scholar 

  5. B. N. Gorin and A. B. Shkilev, Elektrichestvo, No. 6, 31 (1976).

  6. T. Reess, A. Ortega, A. Gibert, P. Domens, and P. Pignolet, J. Phys. D: Appl. Phys. 28, 2306 (1995).

    Article  ADS  Google Scholar 

  7. I. Gallimberti, G. Baccega, A. Bondion-Clergerie, and P. Lalande, C. R. Phys. 3, 1335 (2002).

    Article  ADS  Google Scholar 

  8. P. Ortega, H. Domens, A. Giber, B. Hutzier, and G. Riquel, J. Phys. D: Appl. Phys. 27, 2379 (1994).

    Article  ADS  Google Scholar 

  9. J. R. Dwyer, H. K. Rassoul, M. Al-Dayeh, L. Caraway, A. Chrest, B. Wright, E. Kozak, J. Jerauld, M. A. Uman, V. A. Rakov, D. M. Jordan, and K. J. Rambo, Geophys. Res. Lett. 32, L01803 (2005). https://doi.org/10.1029/2004GL021782

  10. J. R. Dwyer and M. A. Uman, Phys. Rep. 534, 147 (2013).

    Article  ADS  Google Scholar 

  11. P. O. Kochkin, A. P. J. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys. 47, 145203 (2014).

  12. P. O. Kochkin, C. Köhn, U. Ebert, and A. P. J. van Deursen, Plasma Sources Sci. Technol. 25, 44002 (2016).

    Article  Google Scholar 

  13. P. Kochkin, N. Lehtinen, A. P. J. van Deursen, and N. Østgaard, J. Phys. D: Appl. Phys. 49, 425203 (2016).

  14. A. Y. Kostinskiy, V. S. Syssoev, N. A. Bogatov, E. A. Mareev, M. G. Andreev, M. U. Bulatov, D. I. Sukharevsky, and V. A. Rakov, J. Geophys. Res.: Atmos. 123, 5360 (2018).

    Article  ADS  Google Scholar 

  15. D. Petersen, M. Bailey, W. Beasley, and J. Hallett, J. Geophys. Res. 113, D17205 (2008). https://doi.org/10.1029/2007JD009036

  16. N. A. Popov, Plasma Phys. Rep. 29, 695 (2003).

    Article  ADS  Google Scholar 

  17. J. A. Riousset, V. P. Pasko, and A. Bourdon, J. Geophys. Res. 115, A12321 (2010). https://doi.org/10.1029/2010JA015918

  18. I. A. Kossyi, A. Y. Kostinsky, A. A. Matveyev, and V. P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992).

    Article  ADS  Google Scholar 

  19. M. S. Benilov and G. V. Naidis, J. Phys. D: Appl. Phys. 36, 1834 (2003).

    Article  ADS  Google Scholar 

  20. N. Y. Liu and V. P. Pasko, J. Geophys. Res. 109, A04301 (2004). https://doi.org/10.1029/2003JA010064

  21. N. L. Aleksandrov, A. E. Bazelyan, E. M. Bazelyan, and I. V. Kochetov, Plasma Phys. Rep. 21, 57 (1995).

    ADS  Google Scholar 

  22. R. Morrow and J. J. Lowke, J. Phys. D: Appl. Phys. 30, 614 (1997).

    Article  ADS  Google Scholar 

  23. G. V. Naidis, J. Phys. D: Appl. Phys. 32, 2649 (1999).

    Article  ADS  Google Scholar 

  24. G. V. Naidis, Phys. Rev. E 79, 057401 (2009).

  25. M. Černák, E. M. van Veldhuizen, I. Morva, and W. R. Rutgers, J. Phys. D: Appl. Phys. 28, 1126 (1995).

    Article  ADS  Google Scholar 

  26. A. Larsson, J. Phys. D: Appl. Phys. 31, 1100 (1998).

    Article  ADS  Google Scholar 

  27. C. T. Phelps, J. Atmos. Sol.–Terr. Phys. 36, 103 (1974).

    Article  ADS  Google Scholar 

  28. A. Luque and U. Ebert, New J. Phys. 16, 013039 (2014).

  29. M. G. Andreev, N. A. Bogatov, A. Y. Kostinskiy, L. M. Makal’sky, E. A. Mareev, D. I. Suharevsky, and V. S. Syssoev, in Proceedings of the 15th International Conference on Atmospheric Electricity, Norman, OK, 2014, Paper O-03-08.

  30. P. O. Kochkin, C. V. Nguyen, A. P. J. van Deursen, and U. Ebert, J. Phys. D: Appl. Phys. 45, 425202 (2012).

  31. M. Arrayás, U. Ebert, and W. Hundsdorfer, Phys. Rev. Lett. 88, 174502 (2002). https://doi.org/10.1103/PhysRevLett.88.174502

  32. E. D. Lozanskii and O. B. Firsov, Theory of Spark (Atomizdat, Moscow, 1975) [in Russian].

    Google Scholar 

  33. E. D. Lozansky and O. B. Firsov, J. Phys. D: Appl. Phys. 6, 976 (1973).

    Article  ADS  Google Scholar 

  34. L. B. Loeb, J. Geophys. Res. 71, 4711 (1966).

    Article  ADS  Google Scholar 

  35. A. Dubinova, C. Rutjes, U. Ebert, S. Buitink, O. Scholten, and Gia Thi Ngoc Trinh, Phys. Rev. Lett. 115, 015002 (2015). https://doi.org/10.1103/PhysRevLett.115.015002

  36. L. P. Babich, E. I. Bochkov, and T. Neubert, J. Atmos. Sol.–Terr. Phys. 154, 43 (2017). https://doi.org/10.1016/j.jastp.2016.12.010

    Article  ADS  Google Scholar 

  37. L. P. Babich and E. I. Bochkov, Plasma Phys. Rep. 44, 527 (2018). https://doi.org/10.1134/S1063780X18050033

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. M. Kutsyk or L. P. Babich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutsyk, I.M., Babich, L.P. Heating of a Local Region of a Branching Streamer as a Starting Point of a Space Leader and a Negative-Leader Step. Plasma Phys. Rep. 47, 251–256 (2021). https://doi.org/10.1134/S1063780X21030089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21030089

Keywords:

Navigation