Skip to main content
Log in

Study of Interaction of Plasma Flows with Magnetic Field During Implosion of Cone-Cylindrical Nested Arrays

  • PLASMA DYNAMICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The results of the studies of the compression of the plasma of cone-cylindrical nested arrays of mixed composition at current flow through them of up to 3 MA at the Angara-5-1 facility are presented. The outer array of the nested array is a conical array of thin nylon fibers or tungsten wires, while the inner one is a cylindrical tungsten wire array. The implosion of current in this type of nested arrays is a unique opportunity for simulating the interaction of magnetized plasma flows with a strong magnetic field. In the space between the inner and outer arrays, the super-Alfvén plasma flow from the outer array collides with the magnetic field of the discharge current through the inner array. As a result of this interaction in the space between arrays, different plasma flow modes are implemented: pre-Alfvén (Vr < VА), super-Alfvén (Vr > VА), and a mode with the formation of the transition region—a shock wave (SW) between arrays, depending on the ratio of the plasma formation rates of arrays of nested array and on the ratio of their radii. The SW region formation in the space between arrays occurs near the inner array, where the kinetic pressure of the plasma flow from the outer array is balanced by the magnetic pressure of the discharge current of the inner array. New experimental data was obtained on the features of the SW region formation near the surface of the inner array and the nature of its change during the interaction. The use of an external conical array enabled us to obtain the SW position depending on the ratio of radii of the outer and inner arrays in one shot. It is shown that the interaction of plasma flows of the outer conical array with the magnetic field of the inner cylindrical array leads to a significant decrease in the zipper-effect at the final stage of plasma compression of the inner array and the pinch formation. The obtained experimental results are compared with the results of simulating the plasma motion between the arrays using the three-dimensional radiation-magnetohydrodynamic code MARPLE3D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. C. Deeney, M. R. Douglas, R. B. Spielman, T. J. Nash, D. L. Peterson, P. L’Eplattenier, G. A. Chandler, J. F. Seamen, and K. W. Struve, Phys. Rev. Lett. 81, 4883 (1998).

    Article  ADS  Google Scholar 

  2. S. V. Lebedev, R. Aliaga-Rossel, S. N. Bland, J. P. Chit-tenden, A. E. Dangor, M. G. Haines, and M. Zakaullah, Phys. Rev. Lett. 84, 1708 (2000).

    Article  ADS  Google Scholar 

  3. S. N. Bland, S. V. Lebedev, J. P. Chittenden, C. Jennings, and M. G. Haines, Phys. Plasmas 10, 1100 (2003).

    Article  ADS  Google Scholar 

  4. E. V. Grabovskii, G. G. Zukakishvili, K. N. Mitrofanov, G. M. Oleinik, I. N. Frolov, and P. V. Sasorov, Plasma Phys. Rep. 32, 32 (2006).

    Article  ADS  Google Scholar 

  5. M. E. Cuneo, D. B. Sinars, E. M. Waisman, D. E. Bliss, W. A. Stygar, R. A. Vesey, R. W. Lemke, I. C. Smith, P. K. Rambo, J. L. Porter, G. A. Chandler, T. J. Nash, M. G. Mazarakis, R. G. Adams, E. P. Yu, et al., Phys. Plasmas 13, 056318 (2006).

  6. Yu. G. Kalinin, A. S. Kingsep, V. P. Smirnov, Yu. L. Bakshaev, A. V. Bartov, P. I. Blinov, S. A. Dan’ko, L. G. Dubas, A. V. Korel’ski, V. D. Korolev, V. I. Mizhiritski, G. I. Ustroev, A. S. Chernenko, R. V. Chikin, A. Yu. Shashkov, et al., Plasma Phys. Rep. 32, 656 (2006).

    Article  ADS  Google Scholar 

  7. D. J. Ampleford, C. A. Jennings, G. N. Hall, S. V. Lebedev, S. N. Bland, S. C. Bott, F. Suzuki-Vidal, J. B. A. Palmer, J. P. Chittenden, M. E. Cuneo, A. Frank, E. G. Blackman, and A. Ciardi, Phys. Plasmas 17, 056315 (2010).

  8. K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovski, A. V. Branitsky, A. N. Gritsuk, I. N. Frolov, and Ya. N. Laukhin, Plasma Phys. Rep. 43, 916 (2017).

    Article  ADS  Google Scholar 

  9. K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovski, P. V. Sasorov, A. V. Branitsky, A. N. Gritsuk, I. N. Frolov, and Ya. N. Laukhin, Plasma Phys. Rep. 43, 1147 (2017).

    Article  ADS  Google Scholar 

  10. K. N. Mitrofanov, V. V. Aleksandrov, A. N. Gritsuk, A. V. Branitsky, I. N. Frolov, E. V. Grabovski, P. V. Sasorov, O. G. Ol’khovskaya, and V. I. Zaitsev, Plasma Phys. Rep. 44, 203 (2018).

    Article  ADS  Google Scholar 

  11. V. V. Aleksandrov, A. V. Branitski, V. A. Gasilov, E. V. Grabovskiy, A. N. Gritsuk, K. N. Mitrofanov, O. G. Olkhovskaya, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Control. Fusion 61, 035009 (2019).

  12. K. N. Mitrofanov, E. V. Grabovski, V. V. Aleksandrov, I. N. Frolov, G. M. Oleinik, Ya. N. Laukhin, A. N. Gritsuk, P. V. Sasorov, and S. F. Medovshchikov, Plasma Phys. Rep. 38, 941 (2012).

    Article  ADS  Google Scholar 

  13. P. Sasorov, in Proceedings of the 6th International Conference on Dense Z-Pinches, Oxford, 2005, AIP Conf. Proc. 808, 81 (2005).

  14. V. V. Aleksandrov, G. S. Volkov, E. V. Grabovski, A. N. Gribov, A. N. Gritsuk, Ya. N. Laukhin, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 38, 315 (2012).

    Article  ADS  Google Scholar 

  15. Z. A. Al’bikov, E. P. Velikhov, A. I. Veretennikov, V. A. Glukhikh, E. V. Grabovskii, G. M. Gryaznov, O. A. Gusev, G. N. Zhemchuzhnikov, V. I. Zaitsev, O. A. Zolotovskii, Yu. A. Istomin, O. V. Kozlov, I. S. Krasheninnikov, S. S. Kurochkin, G. M. Latmanizova, et al., At. Energ. 68, 26 (1990).

    Google Scholar 

  16. E. P. Yu, B. V. Oliver, D. B. Sinars, T. A. Mehlhorn, M. E. Cuneo, P. V. Sasorov, M. G. Haines, and S. V. Lebedev, Phys. Plasmas 14, 022705 (2007).

  17. V. V. Aleksandrov, A. V. Branitskii, G. S. Volkov, E. V. Grabovskii, M. V. Zurin, S. L. Nedoseev, G. M. Oleinik, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 27, 89 (2001).

    Article  ADS  Google Scholar 

  18. V. V. Alexandrov, I. N. Frolov, M. V. Fedulov, E. V. Grabovsky, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, P. V. Sasorov, V. P. Smirnov, G. S. Volkov, M. V. Zurin, and G. G. Zukakishvili, IEEE Trans. Plasma Sci. 30, 559 (2002).

    Article  ADS  Google Scholar 

  19. G. G. Zukakishvili, K. N. Mitrofanov, V. V. Aleksandrov, E. V. Grabovski, G. M. Oleinik, I. Yu. Porofeev, P. V. Sasorov, and I. N. Frolov, Plasma Phys. Rep. 31, 908 (2005).

    Article  ADS  Google Scholar 

  20. V. V. Aleksandrov, E. V. Grabovski, A. N. Gritsuk, Ya. N. Laukhin, S. F. Medovshchikov, K. N. Mitrofanov, G. M. Oleinik, P. V. Sasorov, M. V. Fedulov, and I. N. Frolov, Plasma Phys. Rep. 36, 482 (2010).

    Article  ADS  Google Scholar 

  21. K. N. Mitrofanov, E. V. Grabovski, G. M. Oleinik, V. V. Aleksandrov, A. N. Gritsuk, I. N. Frolov, Ya. N. Laukhin, P. V. Sasorov, and A. A. Samokhin, Plasma Phys. Rep. 38, 797 (2012).

    Article  ADS  Google Scholar 

  22. V. V. Aleksandrov, K. N. Mitrofanov, A. N. Gritsuk, I. N. Frolov, E. V. Grabovski, and Ya. N. Laukhin, Plasma Phys. Rep. 39, 809 (2013).

    Article  ADS  Google Scholar 

  23. K. N. Mitrofanov, V. V. Aleksandrov, A. N. Gritsuk, E. V. Grabovski, I. N. Frolov, Ya. N. Laukhin, and S. S. Breshkov, Plasma Phys. Rep. 43, 141 (2017).

    Article  ADS  Google Scholar 

  24. E. V. Grabovski, V. V. Aleksandrov, G. S. Volkov, V. A. Gasilov, A. N. Gribov, A. N. Gritsuk, S. V. Dyachenko, V. I. Zaytsev, S. F. Medovshchikov, K. N. Mitrofanov, Ya. N. Laukhin, G. M. Oleinik, O. G. Ol’khovskaja, A. A. Samokhin, P. V. Sasorov, et al., Plasma Phys. Rep. 34, 815 (2008).

    Article  ADS  Google Scholar 

  25. V. Gasilov, S. D’yachenko, O. Olkhovskaya, A. Boldarev, E. Kartasheva, and S. Boldyrev, in Advances in Parallel Computing (Proceedings of the 5th Congress on Computational Methods in Applied Sciences and Engineering, Venice, 2008, Section: Parallel Computing: Architectures. Algorithms, and Applications), Vol. 15, p. 475.

  26. V. A. Gasilov, A. S. Boldarev, S. V. D’yachenko, O. G. Olkhovskaya, E. L. Kartasheva, S. N. Boldyrev, G. A. Bagdasarov, I. V. Gasilova, M. S. Boyarov, and V. A. Shmyrov, Mat. Model. 24 (1), 55 (2012).

    Google Scholar 

  27. THERMOS Software Package and Database, http://www.keldysh.ru/cgi/thermos/navigation.pl?en,home. Cited July 15, 2020.

  28. V. V. Aleksandrov, E. V. Grabovski, A. N. Gribov, A. N. Gritsuk, S. F. Medovshchikov, K. N. Mitrofanov, and G. M. Oleinik, Plasma Phys. Rep. 35, 136 (2009).

    Article  ADS  Google Scholar 

  29. V. V. Alexandrov, G. S. Volkov, E. V. Grabovsky, V. I. Zaitsev, M. V. Zurin, S. F. Medovschikov, K. N. Mitrofanov, S. L. Nedoseev, G. M. Oleinik, I. Yu. Porofeev, A. A. Samokhin, V. P. Smirnov, I. N. Frolov, M. V. Fedulov, Lee Zhenhong, et al., in Proceedings of the 15th International Conference on High-Power Particle Beams, St. Petersburg, 2004, Ed. by V. Engelko, V. Glukhikh, G. Mesyats, and V. Smirnov (Efremov Institte, Saint-Petersburg, 2005), p. 686.

  30. H. Calamy, F. Lassalle, A. Loyen, F. Zucchini, J. P. Chittenden, F. Hamann, P. Maury, A. Georges, J. P. Bedoch, and A. Morell, Phys. Plasmas 15, 012701 (2008).

  31. T. W. L. Sanford, C. A. Jennings, G. A. Rochau, S. E. Rosenthal, G. S. Sarkisov, P. V. Sasorov, W. A. Stygar, L. F. Bennett, D. E. Bliss, J. P. Chittenden, M. E. Cuneo, M. G. Haines, R. J. Leeper, R. C. Mock, T. J. Nash, et al., Phys. Rev. Lett. 98, 065003 (2007).

  32. V. V. Ivanov, V. L. Kantsyrev, V. I. Sotnikov, D. A. Fedin, A. L. Astanovitskiy, B. Le Galloudec, V. Nalajala, I. Shrestha, T. E. Cowan, B. Jones, C. A. Coverdale, C. Deeney, and P. D. LePell, Phys. Plasmas 13, 012704 (2006).

  33. E. V. Grabovski, G. G. Zukakishvili, S. L. Nedoseev, G. M. Oleinik, and I. Yu. Porofeev, Plasma Phys. Rep. 30, 30 (2004).

    Article  ADS  Google Scholar 

  34. S. V. Lebedev, D. J. Ampleford, S. N. Bland, S. C. Bott, J. P. Chittenden, C. Jennings, M. G. Haines, J. B. A. Pal-mer, and J. Rapley, Nucl. Fusion 44, S215 (2004).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Numerical calculations were performed using the equipment of the Center for Collective Use of Ultra-High Performance Computing Resources of the Moscow State University and the computing resources of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences (MSC RAS). The authors are grateful to the Angara-5-1 facility team for the engineering and technical support of the experiments.

Funding

The work was supported by the Russian Foundation for Basic Research (projects nos. 20-02-00007, 18-29-21005, 18-02-00170, and 20-31-70015) and the High Field Initiative of the European Fund for Regional Development (project High Field Initiative [CZ.02.1.01/0.0/0.0/15_003/ 0000449] from the European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Mitrofanov.

Additional information

Translated by G. Dedkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, V.V., Branitskii, A.V., Boldarev, A.S. et al. Study of Interaction of Plasma Flows with Magnetic Field During Implosion of Cone-Cylindrical Nested Arrays. Plasma Phys. Rep. 47, 235–250 (2021). https://doi.org/10.1134/S1063780X21030016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X21030016

Key words:

Navigation