Skip to main content
Log in

Molecular Evolution and Local Root Heterogeneous Expression of the Chenopodium quinoa ARF Genes Provide Insights into the Adaptive Domestication of Crops in Complex Environments

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

Auxin response factors (ARFs) influence plant growth and development via the coupling of basic biological processes. However, the evolution, expansion, and regulatory mechanisms of ARFs in the domesticated crop quinoa after artificial selection remain elusive. In this study, we systematically identified 30 Chenopodium quinoa ARFs (CqARFs). In this typical domesticated crop, ARFs divided into three subfamilies are subjected to strong purification selection and have a highly conserved evolutionary pattern. Polyploidy is the primary reason for the expansion of the ARF family after quinoa domestication. The expression patterns of CqARFs in different tissues have been differentiated, and CqARF2, 5, 9 and 10 from class A have the characteristics of local heterogeneous expression in different regions of roots, which may be the key factors for crops to respond in complex environments. Overall, we examined the evolution and expansion of ARFs in representative domesticated crops using the genome, transcriptome, and molecular biology and discovered a class A ARF-centered heterogeneous expression network that played an important role in auxin signaling and environmental responses. We provide new insights into how ARFs promote domesticated crop adaptation to artificial selection by polyploid expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All sequence data used in this paper are already publicly available. The datasets supporting the conclusions of this article are included within the article and its Additional files.

Code Availability

Not applicable.

Consent for Publication

Not applicable.

References

  • Abdallah N, El-Heba G, Abuelniel G, Abdou S (2015) Impact of cis-acting elements’ frequency in transcription activity in dicot and monocot plants. 3Biotech 5:1007–1009

    Google Scholar 

  • Band L, Wells D, Fozard J, Ghetiu T, French A, Pound M, Wilson M, Yu L, Li W, Hijazi H, Oh J, Pearce S, Perez-Amador M, Yun J, Kramer E, Alonso J, Godin C, Vernoux T, Hodgman T, Pridmore T, Swarup R, King J, Bennett M (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:862–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbez E, Dünser K, Gaidora A, Lendl T, Busch W (2017) Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana. Proc Natl Acad Sci USA 114:E4884–E4893

    Article  CAS  PubMed  Google Scholar 

  • Bazile D, Jacobsen S-E, Verniau A (2016) The global expansion of quinoa: trends and limits (mini review). Front Plant Sci 7:622–628

    Article  PubMed  PubMed Central  Google Scholar 

  • Brumos J, Robles L, Yun J, Vu T, Jackson S, Alonso J, Stepanova A (2018) Local auxin biosynthesis is a key regulator of plant development. Dev Cell 47:306–318

    Article  CAS  PubMed  Google Scholar 

  • Chapman E, Estelle M (2009) Mechanism of auxin-regulated gene expression in plants. Annu Rev Genet 43:265–285

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020a) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  Google Scholar 

  • Chen G, Yue Y, Li L, Li Y, Li H, Ding W, Shi T, Xiulian Y, Wang L-G (2020b) Genome-wide identification of the auxin response factor (ARF) gene family and their expression analysis during flower development of Osmanthus fragrans. Forests 11:245–256

    Article  Google Scholar 

  • Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, Kasahara H, Kamiya Y, Zhao Y (2014) Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots. Plant Cell Physiol 55:1072–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui J, Li X, Li J, Wang C, Cheng D, Dai C (2020) Genome-wide sequence identification and expression analysis of ARF family in sugar beet (Beta vulgaris L.) under salinity stresses. PeerJ 8:e9131–e9140

    Article  PubMed  PubMed Central  Google Scholar 

  • Druege U, Franken P, Hajirezaei M (2016) Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci 7:381–395

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar R (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113–132

    Article  Google Scholar 

  • Fawcett JA, Van de Peer Y, Maere S (2013) Significance and biological consequences of polyploidization in land plant evolution. In: Greilhuber J, Dolezel J, Wendel JF (eds) Plant genome diversity: physical structure, behaviour and evolution of plant genomes, vol 2. Springer, Vienna, pp 277–293

    Chapter  Google Scholar 

  • Feng L, Li G, He Z, Han W, Sun J, Huang F, Di J, Chen Y (2019) The ARF, GH3, and Aux/IAA gene families in castor bean (Ricinus communis L.): genome-wide identification and expression profiles in high-stalk and dwarf strains. Ind Crops Prod 141:111804–111818

    Article  CAS  Google Scholar 

  • Finet C, Berne-Dedieu A, Scutt C, Marlétaz F (2012) Evolution of the ARF gene family in land plants: old domains, new tricks. Mol Biol Evol 30:45–56

    Article  PubMed  Google Scholar 

  • Finet C, Fourquin C, Vinauger M, Berne-Dedieu A, Chambrier P, Paindavoine S, Scutt C (2010) Parallel structural evolution of Auxin Response Factors in the angiosperms. Plant J Cell Mol Biol 63:952–959

    Article  CAS  Google Scholar 

  • Finet C, Jaillais Y (2012) AUXOLOGY: when auxin meets plant evo-devo. Dev Biol 369:19–31

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J (2013) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores-Sandoval E, Eklund DM, Hong S-F, Alvarez J, Fisher T, Lampugnani E, Golz J, Vazquez-Lobo A, Dierschke T, Lin S-S, Bowman J (2018a) Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. N Phytol 218:1612–1630

    Article  CAS  Google Scholar 

  • Flores-Sandoval E, Romani F, Bowman J (2018b) Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front Plant Sci 9:1345–1366

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeling M (2009) Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition. Annu Rev Plant Biol 60:433–453

    Article  CAS  PubMed  Google Scholar 

  • Freire-Rios A, Tanaka K, Crespo I, van der Wijk E, Sizentsova Y, Levitsky V, Lindhoud S, Fontana M, Hohlbein J, Boer D, Mironova V, Weijers D (2020) Arabidopsis architecture of DNA elements mediating ARF transcription factor binding and auxin-responsive gene expression in. Proc Natl Acad Sci USA 117:24557–24566

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Wang L, Oliver M, Chen M-X, Zhang J (2019) Evolution of Auxin Response Factors in plants characterized by phylogenomic synteny network analyses. bioRxiv 9:175–197

  • Guilfoyle T (1999) Auxin-regulated genes and promoters. Biochem Mol Biol Plant Horm 33:423–459

    Article  CAS  Google Scholar 

  • Guilfoyle T, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Chang X, Zhi Y, Wang L, Xing G, Weining S, Nie X (2019) Evolution and identification of the WRKY gene family in quinoa (Chenopodium quinoa). Genes 10:131–154

    Article  CAS  Google Scholar 

  • Hooykaas P, Hall M, Libbenga KR (1999) Biochemistry and Molecular Biology of Plant Hormones. Elsevier, Amsterdam, pp 423–459

    Google Scholar 

  • Ivica L, Tobias D, Peer B (2011) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Google Scholar 

  • Jacobsen SE (2003) The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Rev Int 19:166–167

    Article  Google Scholar 

  • Jarvis D, Ho YS, Lightfoot D, Schmöckel S, Li B, Borm T, Ohyanagi H, Mineta K, Michell C, Saber N, Kharbatia N, Rupper R, Sharp A, Dally N, Boughton B, Woo Y, Gao G, Schijlen E, Guo X, Tester M (2017) The genome of Chenopodium quinoa. Nature 542:1–6

    Article  Google Scholar 

  • Jones D, Taylor W, Thornton J (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–283

    CAS  PubMed  Google Scholar 

  • Korasick D, Westfall C, Lee SG, Nanao M, Dumas R, Hagen G, Guilfoyle T, Jez J, Strader L (2014) Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc Natl Acad Sci USA 111:5427–5432

    Article  CAS  PubMed  Google Scholar 

  • Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones S, Marra M (2009) CIRCOS: an information aesthetic for comparative genomics. Genome Res 19:1639–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2015) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  Google Scholar 

  • Le B, Amjad Nawaz M, Rehman HM, Le T, Yang Sh, Golokhvast K, Son E, Chung G (2016) Genome-wide characterization and expression pattern of auxin response factor (ARF) gene family in soybean and common bean. Genes Genomics 38:1165–1178

    Article  CAS  Google Scholar 

  • Li W, Chen F, Wang Y, Zheng H, Yi Q, Ren Y, Gao J (2020) Genome-wide identification and functional analysis of ARF transcription factors in Brassica juncea var. tumida. PLoS ONE 15:e0232039–e0232058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YL, Gao ZH, Song J, Wang WX, Shi T (2017) Auxin response factor (ARF) and its functions in plant growth and development. Zhiwu Shengli Xuebao/Plant Physiol J 53:1842–1858

    Google Scholar 

  • Lijsebettens M, Grasser K (2014) Transcript elongation factors: shaping transcriptomes after transcript initiation. Trends Plant Sci 19:717–726

    Article  PubMed  Google Scholar 

  • Liu M, Ma Z, Wang A, Zheng T, Huang L, Sun W, Zhang Y, Jin W, Zhan J, Cai Y, Tang Y, Wu Q, Tang Z, Bu T, Li C, Chen H (2018a) Genome-wide investigation of the auxin response factor gene family in tartary buckwheat (Fagopyrum tataricum). Int J Mol Sci 19:3526–3544

    Article  PubMed Central  Google Scholar 

  • Liu M, Sun W, Li C, Yu G, Li J, Wang Y, Wang X (2020) A multilayered cross-species analysis of GRAS transcription factors uncovered their functional networks in plant adaptation to the environment. J Adv Res 11:4897–4911

    Google Scholar 

  • Liu N, Dong L, Deng X, Liu D, Liu Y, Li M, Hu Y, Wen Z (2018b) Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. BMC Plant Biol 18:336–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2012) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  Google Scholar 

  • Mähönen A, Ten Tusscher K, Siligato R, Smetana O, Díaz-Triviño S, Salojärvi J, Wachsman G, Prasad K, Heidstra R, Scheres B (2014) PLETHORA gradient formation mechanism separates auxin responses. Nature 515:125–129

    Article  PubMed  PubMed Central  Google Scholar 

  • Martín-Arevalillo R, Thévenon E, Jegu F, Vinos-Poyo T, Vernoux T, Dumas R (2019) Evolution of the Auxin Response Factors from charophyte ancestors. PLoS Genet 15:e1008400–e1008416

    Article  PubMed  PubMed Central  Google Scholar 

  • Matosevich R, Cohen I, Gil-Yarom N, Modrego A, Friedlander-Shani L, Verna C, Scarpella E, Efroni I (2020) Local auxin biosynthesis is required for root regeneration after wounding. Nat Plants 6:1020–1030

    Article  CAS  PubMed  Google Scholar 

  • Matosevich R, Cohen I, Gil-Yarom N, Modrego A, Verna C, Scarpella E, Efroni I (2019) A dynamic pattern of local auxin sources is required for root regeneration. bioRxiv 6:1–26

  • Meyer R, Purugganan M (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852

    Article  CAS  PubMed  Google Scholar 

  • Motte H, Vanneste S, Beeckman T (2019) Molecular and environmental regulation of root development. Annu Rev Plant Biol 70:465–488

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Zhu J, Bai M, Arenhart R, Sun Y, Wang Z (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife 3:e03031–e03042

    Article  PubMed Central  Google Scholar 

  • Pei Q, Li N, Yang Q, Wu T, Feng S, Feng X, Jing Z, Zhou R, Gong K, Yu T, Wang Z, Song X (2021) Genome-wide identification and comparative analysis of ARF family genes in three Apiaceae species. Front Genet 11:590535–590545

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao X, Li Q, Yin H, Qi K, Li L-T, Wang R, Zhang S, Paterson A (2019) Gene duplication and evolution in recurring polyploidization–diploidization cycles in plants. Genome Biol 20:38–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Remington D, Vision T, Guilfoyle T, Reed J (2004) Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 135:1738–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Repo-Carrasco-Valencia R, Espinoza C, Jacobsen S-E (2003) Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and Kañiwa (Chenopodium pallidicaule). Food Rev Int 19:179–189

    Article  Google Scholar 

  • Robert H, Grones P, Stepanova A, Robles L, Lokerse A, Alonso J, Weijers D, Friml J (2013) Local auxin sources orient the apical–basal axis in Arabidopsis embryos. Curr Biol 23:2506–2512

    Article  CAS  PubMed  Google Scholar 

  • Roosjen M, Paque S, Weijers D (2017) Auxin Response Factors: output control in auxin biology. J Exp Bot 69:179–188

    Article  Google Scholar 

  • Roulin A, Auer P, Libault M, Schlueter J, Farmer A, May G, Stacey G, Doerge R, Jackson S (2012) The fate of duplicated genes in a polyploid plant genome. Plant J Cell Mol Biol 73:143–153

    Article  Google Scholar 

  • Ruiz Carrasco K, Antognoni F, Coulibaly A, Lizardi S, Covarrubias A, Martínez E, Molina-Montenegro M, Biondi S, Zurita-Silva A (2011) Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiol Biochem/Soc fr physiol vég 49:1333–1341

    Article  CAS  Google Scholar 

  • Salman-Minkov A, Sabath N, Mayrose I (2016) Whole-genome duplication as a key factor in crop domestication. Nat Plants 2:16115–16119

    Article  CAS  PubMed  Google Scholar 

  • Soltis P, Marchant D, Van de Peer Y, Soltis D (2015) Polyploidy and genome evolution in plants. Curr Opin Genet Dev 35:119–125

    Article  CAS  PubMed  Google Scholar 

  • Song S, Hao L, Zhao P, Xu Y, Zhong N, Zhang H, Liu N (2019) Genome-wide identification, expression profiling and evolutionary analysis of auxin response factor gene family in potato (Solanum tuberosum Group Phureja). Sci Rep 9:1755–1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X-M, Wang J-P, Sun P, Ma X, Yang Q-H, Hu J-J, Sun S-R, Li Y-X, Yu J-G, Feng S-Y, Pei Q-Y, Yu T, Yang N-S, Liu Y-Z, Li X-Q, Paterson A, Wang X-Y (2020) Preferential gene retention increases the robustness of cold regulation in Brassicaceae and other plants after polyploidization. Hortic Res 7:20–35

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepanova A, Robertson-Hoyt J, Yun J, Benavente L, Xie D, Dolezal K, Schlereth A, Jürgens G, Alonso J (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–179

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Wang L, Li W, Zhao L, Huang X, Azam S, Qin Y (2017) Genome-wide identification of auxin response factor (ARF) genes family and its tissue-specific prominent expression in pineapple (Ananas comosus). Trop Plant Biol 10:1–11

    Article  Google Scholar 

  • Tang H, Wang X, Bowers J, Ming R, Alam M, Paterson A (2008) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truskina J, Han J, Chrysanthou E, Galvan-Ampudia C, Lainé S, Brunoud G, Macé J, Bellows S, Legrand J, Bågman A-M, Smit M, Smetana O, Stigliani A, Porco S, Bennett M, Mähönen A, Parcy F, Farcot E, Roudier F, Vernoux T (2021) A network of transcriptional repressors modulates auxin responses. Nature 589:1–4

    Article  Google Scholar 

  • Van de Peer Y, Mizrachi E, Marchal K (2017) The evolutionary significance of polyploidy. Nat Rev Genet 18:411–424

    Article  PubMed  Google Scholar 

  • Vaseva I, Qudeimat E, Potuschak T, Du Y, Genschik P, Vandenbussche F, Van Der Straeten D (2018) Arabidopsis the plant hormone ethylene restricts growth via the epidermis. Proc Natl Acad Sci USA 115:E4130–E4139

    Article  CAS  PubMed  Google Scholar 

  • Vega-Galvez A, Miranda M, Vergara J, Uribe E, Díaz L, Martínez E (2010) Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. J Sci Food Agric 90:2541–2547

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc HS, Cellier C, Parry G, Koumproglou R, Doonan J, Estelle M, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508–523

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H, Tang K, Han B, Tao Y (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: A toolkit incorporating gamma-series methods and sliding window strategies. Genomics Proteomics Bioinform 8:77–80

    Article  CAS  Google Scholar 

  • Wang S, Li L, Li H, Sahu SK, Wang H, Xu Y, Xian W, Song B, Liang H, Cheng S, Chang Y, Song Y, Çebi Z, Wittek S, Reder T, Peterson M, Yang H, Wang J, Melkonian B, Liu X (2020a) Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants 6:95–106

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Whalley W, Miller A, White P, Zhang F, Shen J (2020b) Sustainable cropping requires adaptation to a heterogeneous rhizosphere. Trends Plant Sci 25:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Deng D, Shi Y, Miao N, Bian Y, Yin Z (2011) Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes. Mol Biol Rep 39:2401–2415

    Article  PubMed  Google Scholar 

  • Wang Y, Tang H, Debarry J, Tan X, Li J, Wang X, Lee T-H, Jin H, Marler B, Guo H, Kissinger J, Paterson A (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49–e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weijers D, Wagner D (2016) Transcriptional Responses to the Auxin Hormone. Annu Rev Plant Biol 67:539–574

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang F, Cheng L, Kong F, Peng Z, Liu S, Yu X, Lu G (2011) Identification, isolation and expression analysis of auxin response factor (ARF) genes in Solanum lycopersicum. Plant Cell Rep 30:2059–2073

    Article  CAS  PubMed  Google Scholar 

  • Xu J-H, Messing J (2008) Diverged copies of the seed regulatory opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize. Mol Plant 1:760–769

    Article  CAS  PubMed  Google Scholar 

  • Zdobnov EM, Rolf A (2001) InterProScan—an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17:847–848

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y (2018) Essential roles of local auxin biosynthesis in plant development and in adaptation to environmental changes. Annu Rev Plant Biol 69:417–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the colleagues in our laboratory for providing useful discussions and technical assistance.

Funding

This research was supported by a Study on Entrepreneurship Training Program for College Students (202010626015) and Function Study of FtbHLH Transcription Factor Regulating Tartary Buckwheat Fruit Dehiscence (2021YFH0086) of Sichuan Province Science and Technology Support Program. Funds were used for the design of the study, collection, analysis, and interpretation of data, and in writing the manuscript, as well as in the open access payment.

Author information

Authors and Affiliations

Authors

Contributions

W-JS and H-C planned and designed the research. H-MY and W-JS analyzed data. H-MY wrote the original manuscript. W-JS and Z-TM identified ARF family of quinoa and visualized structures of CqARFs. W-JS and X-RX determined the ARFs duplication types of quinoa and Arabidopsis. Y-Y and S-JW performed CqARF genes chromosome distribution, gene duplication, and synteny analysis. H-MY and W-JS detected CqARFs expression levels by qRT-PCR and the correlation of gene expression was analyzed. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Handling editor: Carrie Olson-Manning.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 209 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Yu, H., Ma, Z. et al. Molecular Evolution and Local Root Heterogeneous Expression of the Chenopodium quinoa ARF Genes Provide Insights into the Adaptive Domestication of Crops in Complex Environments. J Mol Evol 89, 287–301 (2021). https://doi.org/10.1007/s00239-021-10005-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-021-10005-5

Keywords

Navigation