Linear vs non-linear analysis on self-induced vibration of OTEC cold water pipe due to internal flow

https://doi.org/10.1016/j.apor.2021.102610Get rights and content
Under a Creative Commons license
open access

Abstract

This paper presents analytical and numerical analyses on self-induced vibration of Ocean Thermal Energy Conversion (OTEC) Cold Water Pipe (CWP) for a 100 MW-net OTEC power plant. The CWP is described as a vertically-hanged, top-tensioned riser subjected to internal flow effect (IFE) and ambient fluid effects (added mass and drag force). In the analytical analysis, two definitions of the drag force equation in the frequency-domain term and time-domain term are considered yielding a linear differential equation and a non-linear differential equation. The stability is assessed by discretizing the equations using Frobenius method and Galerkin Method and then plotting its eigenfrequencies or its eigenvalues in an Argand diagram. Separately, a fully-coupled fluid-structure interaction is carried out in a numerical simulation for particular cases. The scantlings of the riser are chosen from the available size of Fiber Reinforced Plastic (FRP) pipe in a manufacturer and varied accordingly for future production capacity development. The riser is pinned at the top and mounted at the bottom. Results indicate that the predicted critical velocity in the time domain is averagely 20% higher compared to the frequency domain. The effect of the clump weight on the critical velocity is more significant for light material compared with relatively high-density material.

Keywords

Ocean thermal energy conversion (OTEC)
Cold water pipe (CWP)
Critical velocity prediction

Cited by (0)