Skip to main content
Log in

Stiffness and strength of an artificially cemented sand cured under stress

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Research on naturally cemented soils (e.g. sandstones) has increased considerably in recent years, mainly due to the growing interest in finding new offshore oil wells at depths that can sometimes exceed 1000 m. Although testing using undisturbed samples is ideal, the extraction, transport and preservation of such samples is incredibly difficult and sometimes unfeasible. Therefore, in order to study the natural cementation of these materials, triaxial compression tests were performed on an artificially cemented sand cured at effective stress of 500, 2000 and 4000 kPa and then compared with samples cured under atmospheric pressure and then sheared at the same effective stresses. Samples with different dosages were studied. Results showed that the type of curing does not present statistical influence on the peak strength values. On the other hand, the type of curing, together with the effective stress at the beginning of the shearing and the sample dosage control both the maximum stiffness values at very small strains as well as the stiffness degradation with strain. Simple mathematical models have been successfully adjusted to standardized results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. ABNT.: NBR 16697: Portland Cement. Rio de Janeiro: (in Portuguese) (2018)

  2. Ahnberg, H.: On yield stresses and the influence of curing stresses on stress path and strengh measured in triaxial testing of stabilized soils. Can. Geotech. J. 44, 54–66 (2007)

    Article  Google Scholar 

  3. Airey, D.: Triaxial testing of naturally cemented carbonate sand. J. Geotech. Eng. 119, 1379–1398 (1993)

    Article  Google Scholar 

  4. Alvarado, G., Coop, M., Willson, S.: On the role of bond breakage due to unloading in the behaviour of weak sandstones. Géotechnique 62(4), 303–316 (2012)

    Article  Google Scholar 

  5. ASTM.: D2487: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). West Conshohocken, PA, USA: ASTM International (2017)

  6. ASTM.: D7181: Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils. West Conshohocken, PA, USA: ASTM International (2020)

  7. Bressani, L., Vaughan, P.: Damage to soil during triaxial testing 12nd int conf on soil mechanics and foundation engineering. A A Balkema, Rio Janeiro (1989)

    Google Scholar 

  8. Catton, M.: Soil-cement technology–a résumé. research and development laboratories of the portland cement association: bulletin 136. J. PCA Res. Dev. Lab. 133, 197–205 (1962)

    Google Scholar 

  9. Clayton, C.R.I., Khatrush, S., Bica, A., Siddique, A.: The use of hall effect semiconductors in geotechnical instrumentation. Geotech. Test. J. 12(1), 69–76 (1989)

    Article  Google Scholar 

  10. Consoli, N.C., Cruz, R., Viana da Fonseca, A., Coop, M.: Influence of cement-voids ratio on stress-dilatancy behavior of artificially cemented sand. J. Geotech. Geoenviron. Eng. 138(1), 100–109 (2012)

    Article  Google Scholar 

  11. Consoli, N.C., Cruz, R.C., Floss, M.F., Festugato, L.: Parameters controlling tensile and compressive strength of artificially cemented sand. J. Geotech. Geoenviron. Eng. 136, 759–763 (2010)

    Article  Google Scholar 

  12. Consoli, N.C., Foppa, D.: Porosity/cement ratio controlling initial bulk modulus and incremental yield stress of an artificially cemented soil cured under stress. Géotech. Lett. 4, 1–6 (2014)

    Article  Google Scholar 

  13. Consoli, N.C., Foppa, D., Festugato, L., Heineck, K.S.: Key parameters for strength control of artificially cemented soils. J. Geotech. Geoenviron. Eng. 133(2), 197–205 (2007)

    Article  Google Scholar 

  14. Consoli, N.C., Marques, S.F.V., Floss, M.F., Festugato, L.: Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils. J. Mater. Civil Eng. 29, 1–7 (2017)

    Google Scholar 

  15. Consoli, N.C., Rotta, G.V., Prietto, P.D.M.: Influence of curing under stress on the triaxial response of cemented soils. Géotechnique 50(1), 99–105 (2000)

    Article  Google Scholar 

  16. Consoli, N.C., Viana da Fonseca, A., Cruz, R.C., Heineck, K.S.: Fundamental parameters for the stiffness and strength control of artificially cemented sand. J. Geotech. Geoenviron. Eng. 9, 1347–1353 (2009)

    Article  Google Scholar 

  17. Consoli, N., Rotta, G., Prietto, P.: Yielding–compressibility–strength relationship for an artificially cemented soil cured under stress. Géotechnique 56, 69–72 (2006)

    Article  Google Scholar 

  18. Consoli, N., Rotta, G., Foppa, D., Fahey, M.: Mathematical model for isotropic compression behaviour of cemented soil cured under stress. Geomech. Geoeng.: An Int. J. 2, 269–280 (2007)

    Article  Google Scholar 

  19. Consoli, N.C., Hoch, B., Festugato, L., Diambra, A., Ibraim, E., Silva, J. K.: Compacted chalk putty-cement blends: mechanical properties and performance. J. Mater. Civil Eng. 30, 04017266 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002141

    Article  Google Scholar 

  20. Consoli, N.C., Lopes Junior, L.S., Prietto, P.D.M., Festugato, L, Cruz, R.C.: Variables controlling stiffness and strength of lime-stabilized soils. J. Geotech. Geoenviron. Eng. 137, 628–632 (2011). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000470

    Article  Google Scholar 

  21. Coop, M., Atkinson, J.: The mechanics of cemented carbonate sands. Géotechnique 43(1), 53–67 (1993)

    Article  Google Scholar 

  22. Coop, M., & Lee, I.: The Behaviour of Granular Soils at Elevated Stresses. Proc. C.P. Wroth Memorial Symposium (pp. 186–198). London: Thomas Telford (1993)

  23. Cuccovillo, T., Coop, M.: On the mechanics of structured sands. Géotechnique 49(6), 741–760 (1999)

    Article  Google Scholar 

  24. Dalla Rosa, F., Consoli, N.C., Baudet, B.A.: An experimental investigation of the behaviour of artificially cemented soil cured under stress. Géotechnique 58, 675–679 (2008)

    Article  Google Scholar 

  25. Elliot, G., Brown, E.T.: Yield of a soft, hig-porosity rock. Géotechnique 35(4), 413–423 (1985)

    Article  Google Scholar 

  26. Festugato, L., Peccin, A., Diambra, A., Consoli, N. C., Ibraim, E.: Modelling tensile/compressive strength ratio of fibre reinforced cemented soils. Geotext. Geomembranes. 46, 155–165 (2018). https://doi.org/10.1016/j.geotexmem.2017.11.003

    Article  Google Scholar 

  27. Fonseca, A., Cruz, R., Consoli, N.: Strength properties of sandy soil-cement admixtures. Geotech. Geol. Eng. 27, 681–686 (2009)

    Article  Google Scholar 

  28. Gasparre, A., Nishimura, S., Minh, N., Coop, M., Jardine, R.: The stiffness of natural London clay. Géotechinique 57, 33–47 (2007)

    Article  Google Scholar 

  29. Hardin, B., Drnevich, V.: Shear modulus and damping in soils: design equations and curves. J. Soil Mech. Found. Div. 91, 667–692 (1972)

    Article  Google Scholar 

  30. Henzinger, C., Schuhmacher, S.A., Festugato, L.: Applicability of the porosity/binder index to nonhomogeneous mixtures of fine-grained soil with lignite fly ash. J. Mater Civil Eng. 30, 06018013 (2018). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002447

    Article  Google Scholar 

  31. Ingles, O., Metcalf, J.: Soil stabilization - principles and practice. Butterworths, Australia (1972)

    Google Scholar 

  32. Jardine, R., Fourie, A., Maswoswe, A., & Burland, J.: Field and laboratory measurements of soil stiffness. Proc. 11th Int. Conf. Soil Mech. Found. Eng 511–514 (1985)

  33. Kavvadas, M. J., & Anagnostopoulos, A. G.:A framework for the mechanical behavior of strutured soils. 2nd Int Sympp. on Geotechnics of Hard Soils - Soft Rocks, (pp. 591–601). Naples (1998)

  34. La Rochelle, P.; Leroueil, S.; Trak, B. Blais-Leroux; Tavenas, F.: Observational approach to membrane and area correction in triaxial tests. Symposium on advanced triaxial testing of soil and rock (pp. 715–731). Louisville: Proceedings... Philadelphia: American Societ of Testing and Materials (1988)

  35. Ladd, R.: Preparing test specimens using undercompaction. Geotech. Test. J. 1(1), 16–23 (1978)

    Article  Google Scholar 

  36. Leroueil, S., Vaughan, P.: The general and congruent effects of structure in natural soil and weak rocks. Géotechinique 40(3), 467–488 (1990)

    Article  Google Scholar 

  37. Marques, S., Consoli, N.C., Almeida e Souza, J.: Testing cement improved residual soil layers. J. Mater Civil Eng. 26, 544–550 (2014). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000725

    Article  Google Scholar 

  38. Marri, A., Wanatowski, D., Yu, H.S.: Drained behaviour of cemented sand in high pressure triaxial compression tests. Geomech. Geoeng.: An Int. J. 7, 1–16 (2012)

    Article  Google Scholar 

  39. McDowell, G., Bolton, M.: On the micro mechanics of crushable aggregates. Geotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  40. Muir Wood, D.: Geotechnical modelling (2.2). CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  41. Pestana, J., Whittle, A.: A compression model for cohesionless soils. Geotechnique 45(4), 611–631 (1995)

    Article  Google Scholar 

  42. Porbaha, A., Shibuya, S., Kishida, T.: State of the art in deep mixing technology. part: geomaterial characterization. Ground Improv. 4, 91–110 (2000)

    Article  Google Scholar 

  43. Rabbi, A., Kuwano, J., Deng, J., Boon, T.: Effect of curing stress and period on the mechanical properties of cement-mixed sand. Soils Found. 51, 651–661 (2011)

    Article  Google Scholar 

  44. Rotta, G.V., Consoli, N.C., Prietto, P.D.M., Coop, M.R., Graham, J.: Isotropic yielding in an artificially cemented soil cured under stress. Géotechnique 53(5), 493–501 (2003)

    Article  Google Scholar 

  45. Santos, A.P.S., Consoli, N.C., Baudet, B.A.: The mechanics of fibre-reinforced sand. Géotechnique 60(10), 791–799 (2010)

    Article  Google Scholar 

  46. Santos, J., Correia, A.: Reference threshold shear strain of soil. 15th its application to obtain a uique strain dependent shear modulus curve soil. Int Conf SMGE AA Balkema, Istambul (2001)

    Google Scholar 

  47. Schnaid, F., Prietto, P.D.M., Consoli, N.C.: Characterization of cemented sand in triaxial compression. J. Geotech. Geonviron. Eng. 127(10), 857–868 (2001)

    Article  Google Scholar 

  48. Silvani, C., Lucena, L.C.F.L., Tenorio, E.A.G., Scheuermann Filho, H.C., Consoli, N.C.: Key parameter for swelling control of compacted expansive fine-grained soil-lime blends. J. Geotech. Geoenviron. Eng. 146, 06020012 (2020). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002335

    Article  Google Scholar 

  49. Stokoe, K., Darandeli, M., Gilbert, R., Menq, F., & Choi, W.: Development of a new family of normalized modulus reduction and material damping curves. International Workshop on Uncertainties in Nonlinear Soil Properties and their Impact on Modeling Dynamic Soil Response. UC Berkeley (2004)

  50. Suzuki, M., Fujimoto, T., Taguchi, T.: Peak and residual strength characteristics of cement-treated soil cured under different. Soils Found. 54, 687–698 (2014)

    Article  Google Scholar 

  51. Vucetic, M.: Cyclic threshold shear strains in soils. J. Geotech. Eng. 120, 2208–2228 (1994)

    Article  Google Scholar 

  52. Zhang, R., ZhengXiaoya, J.B.: Experimental investigation on effect of curing stress on the strength of cement-stabilized clay at high water content. Acta Geotech. 12, 921–936 (2017)

    Article  Google Scholar 

  53. Zhu, F., Clark, J., Paulin, M.: Factors affecting at-rest lateral stress in artificially cemented sands. Can. Geotech. J. 32, 195–203 (1995)

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to express their appreciation to Edital 12/2014 FAPERGS/CNPq—PRONEX (project # 16/2551-0000469-2), CNPq (INCT, Universal and Produtividade em Pesquisa) and CAPES (PNPD and PROEX) for funding the research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio Filipe Veloso Marques.

Ethics declarations

Conflict of interest

Authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest, or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, S.F.V., Festugato, L. & Consoli, N.C. Stiffness and strength of an artificially cemented sand cured under stress. Granular Matter 23, 35 (2021). https://doi.org/10.1007/s10035-021-01099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-021-01099-1

Keywords

Navigation