Skip to main content
Log in

Foraging behavior in visual search: A review of theoretical and mathematical models in humans and animals

  • Review
  • Published:
Psychological Research Aims and scope Submit manuscript

Abstract

Visual search (VS) is a fundamental task in daily life widely studied for over half a century. A variant of the classic paradigm—searching one target among distractors—requires the observer to look for several (undetermined) instances of a target (so-called foraging) or several targets that may appear an undefined number of times (recently named as hybrid foraging). In these searches, besides looking for targets, the observer must decide how much time is needed to exploit the area, and when to quit the search to eventually explore new search options. In fact, visual foraging is a very common search task in the real world, probably involving additional cognitive functions than typical VS. It has been widely studied in natural animal environments, for which several mathematical models have been proposed, and just recently applied to humans: Lévy processes, composite and area-restricted search models, marginal value theorem, and Bayesian learning (among others). We conducted a systematic search in the literature to understand those mathematical models and study its applicability in human visual foraging. The review suggests that these models might be the first step, but they seem to be limited to fully comprehend foraging in visual search. There are essential variables involving human visual foraging still to be established and understood. Indeed, a jointly theoretical interpretation based on the different models reviewed could better account for its understanding. In addition, some other relevant variables, such as certain individual differences or time perception might be crucial to understanding visual foraging in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Reprinted from Charnov, E. L. (1976) Optimal Foraging, the Marginal Value Theorem. Theoretical Population Biology, 9(2), p. 132. Copyright by Elsevier. Reprinted with permission

Fig. 2

Similar content being viewed by others

References

  • Adachi, T., Costa, D. P., Robinson, P. W., Peterson, S. H., Yamamichi, M., Naito, Y., & Takahashi, A. (2017). Searching for prey in a three‐dimensional environment: Hierarchical movements enhance foraging success in northern elephant seals. Functional Ecology, 31(2), 361–369.

    Google Scholar 

  • Adler, F. R., & Kotar, M. (1999). Departure time versus departure rate: How to forage optimally when you are stupid. Evolutionary Ecology Research, 1, 411–421.

    Google Scholar 

  • Ahmed, L., & de Fockert, J. W. (2012). Focusing on attention: The effects of working memory capacity and load on selective attention. PLoS ONE, 7(8), e43101.

    PubMed  PubMed Central  Google Scholar 

  • Alonso, J. C., Alonso, J. A., Bautista, L. M., & Muñoz-Pulido, R. (1995). Patch use in cranes: A field test of optimal foraging predictions. Animal Behavior, 49, 1367–1379.

    Google Scholar 

  • Aplin, L. M., Farine, D. R., Mann, R. P., & Sheldon, B. C. (2014). Individual-level personality influences social foraging and collective behavior in wild birds. Proceedings of the Royal Society B, 281, 20141016.

    PubMed  PubMed Central  Google Scholar 

  • Arkes, H. R., & Ayton, P. (1999). The sunk cost and Concorde effects: Are humans less rational than lower animals? Psychological Bulletin, 125(5), 591–600.

    Google Scholar 

  • Arkes, H. R., & Blumer, C. (1985). The psychology of sunk cost. Organizational Behavior and Human Decision Processes, 35(1), 124–140.

    Google Scholar 

  • Aswani, S. (1998). Patterns of marine harvest effort in southwestern New Georgia, Solomon Islands: Resource management or optimal foraging? Ocean & Coastal Management, 40(2–3), 207–235.

    Google Scholar 

  • Auger-Méthé, M., Derocher, A. E., DeMars, C. A., Plank, M. J., Codling, E. A., & Lewis, M. A. (2016). Evaluating random search strategies in three mammals from distinct feed guilds. Journal of Animal Ecology, 85(5), 1411–1421.

    Google Scholar 

  • Auger-Méthé, M., Derocher, A., Plank, M. J., Codling, E., & Lewis, M. A. (2015). Differentiating the Lévy walk from a composite correlated random walk. Methods in Ecology and Evolution, 6, 1179–1189.

    Google Scholar 

  • Bailey, H., Lyubchich, V., Wingfield, J., Fandel, A., Garrod, A., & Rice, A. N. (2019). Empirical evidence that large marine predator foraging behavior is consistent with area-restricted search theory. Ecology, 100(8), e02743.

    PubMed  Google Scholar 

  • Baronchelli, A., & Radicchi, F. (2013). Lévy flights in human behavior and cognition. Chaos, Solitons & Fractals, 56, 101–105.

    Google Scholar 

  • Bartumeus, F. (2007). Lévy processes in animal movement: An evolutionary hypothesis. Fractals, 15(2), 151–162.

    Google Scholar 

  • Bartumeus, F., Raposo, E., Viswanathan, G. M., & Da Luz, M. (2014). Stochastic optimal foraging: Tuning intensive and extensive dynamics in random searches. PLoS ONE, 9(9), e106373.

    PubMed  PubMed Central  Google Scholar 

  • Baumann, C., Singmann, H., Gershman, S. J., & Von Helversen, B. (2020). A linear threshold model for optimal behavior model. Proceedings of the National Academy of Sciences, 117(23), 12750–12755.

    Google Scholar 

  • Benedix, J. H. (1993). Area-restricted search by the plains pocket gopher (Geomys bursarius) in tallgrass prairie habitat. Behavioral Ecology, 4(4), 318–324.

    Google Scholar 

  • Benhamou, S. (2007). How many animals really do the Lévy walk? Ecology, 88, 1962–1969.

    PubMed  Google Scholar 

  • Benhamou, S., & Collet, J. (2015). Ultimate failure of the Lévy Foraging Hypothesis: Two-scale searching strategies outperform scale-free ones even when prey are scarce and cryptic. Journal of Theoretical Biology, 387, 221–227.

    PubMed  Google Scholar 

  • Bennison, A., Quinn, J. L., Debney, A., & Jessop, M. (2019). Tidal drift removes the need for area-restricted search in foraging Atlantic puffins. Biology Letters, 15(7), 20190208.

    PubMed  PubMed Central  Google Scholar 

  • Bertrand, S., Bertrand, A., Guevara-Carrasco, R., & Gerlotto, F. (2007). Scale-invariant movements of fishermen: The same foraging strategy as natural predators. Ecological Applications, 17(2), 331–337.

    PubMed  Google Scholar 

  • Bettinger, R. L., & Grote, M. N. (2016). Marginal value theorem, patch choice, and human foraging response in varying environments. Journal of Anthropolical Archaeology, 42, 79–87.

    Google Scholar 

  • Biernaskie, J. M., Walker, S. C., & Gegear, R. J. (2009). Bumblebees learn to forage like Bayesians. The American Naturalist, 174(3), 413–423.

    Google Scholar 

  • Biggs, A. T. (2017). Getting satisfied with “satisfaction of search”: How to measure errors during multiple-target search. Attention, Perception & Psychophysics, 79, 1353–1365.

    Google Scholar 

  • Biggs, A. T., Clark, K., & Mitroff, S. R. (2017). Who should be searching? Differences in personality can affect visual search accuracy. Personality and Individual Differences, 116, 353–358.

    Google Scholar 

  • Bixter, M. T., & Luhmann, C. C. (2013). Adaptive intertemporal preferences in foraging-style environments. Frontiers in Neuroscience, 7, 93.

    PubMed  PubMed Central  Google Scholar 

  • Boccignone, G., & Ferraro, M. (2004). Modelling gaze shift as a constrained random walk. Physica A: Statistical Mechanics and its Applications, 331, 207–218.

    Google Scholar 

  • Bowers, J. S., & Davis, C. J. (2012). Bayesian just-so stories in psychology and neuroscience. Psychological Bulletin, 138(3), 389–414.

    PubMed  Google Scholar 

  • Brockmann, D., & Geisel, T. (2000). The ecology of gaze shifts. Neurocomputing, 32–33, 643–650.

    Google Scholar 

  • Brown, C. T., Liebovitch, L. S., & Glendon, R. (2007). Lévy flights in dobe ju/’hoansi foraging patterns. Human Ecology, 35(1), 129–138.

    Google Scholar 

  • Cain, M. S., Vul, E., Clark, K., & Mitroff, S. R. (2012). A Bayesian optimal foraging model of human visual search. Psychological Science, 23(9), 1047–1054.

    PubMed  Google Scholar 

  • Cassini, M. H., Kacelnik, A., & Segura, E. T. (1990). The tale of the screaming hairy armadillo, the guinea pig and the marginal value theorem. Animal Behavior, 39, 1030–1050.

    Google Scholar 

  • Cassini, M. H., Lichtenstein, G., Ongay, J. P., & Kacelnik, A. (1993). Foraging behavior in guinea pigs: Further tests of the marginal value theorem. Behavioral Processes, 29, 99–112.

    Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2), 129–136.

    PubMed  Google Scholar 

  • Constantino, S. M., & Daw, N. D. (2015). Learning the opportunity cost time in a patch-foraging task. Cognitive, Affective and Behavioral Neuroscience, 15(4), 837–853.

    PubMed  Google Scholar 

  • Cowie, R. J. (1977). Optimal foraging in great tits (Parus major). Nature, 268, 137–139.

    Google Scholar 

  • Crook, K. A., & Davoren, G. K. (2014). Underwater behaviour of common murres foraging on capelin: Influences of prey density and antipredator behaviour. Marine Ecology Progress Series, 501, 279–290.

    Google Scholar 

  • Cunha, M., & Caldieraro, F. (2009). Sunk-cost effects on purely behavioral investments. Cognitive Science, 33, 105–113.

    PubMed  Google Scholar 

  • Cuthill, I. C., Haccou, P., & Kacelnik, A. (1994). Starlings (Sturnus vulgaris) exploiting patches: Response to long-term changes in travel time. Behavioral Ecology, 5(1), 81–90.

    Google Scholar 

  • Da Silveira, N. S., Niebuhr, B. B. S., Muylaert, R. L., Ribeiro, M. C., & Pizo, M. A. (2016). Effects of land cover on the movement of frugivorous birds in a heterogeneous landscape. PLoS ONE, 11(6), e0156688.

    PubMed  PubMed Central  Google Scholar 

  • Dall, S. R. X., Giraldeau, L. A., Olsson, O., McNamara, J., & Stephens, D. W. (2005). Information and its use by animals in evolutionary ecology. Trends in Ecology and Evolution, 20(4), 187–193.

    PubMed  Google Scholar 

  • Davidson, J. D., & El-Hadi, A. (2019). Foraging as an evidence accumulation process. PLoS Computational Biology, 15(7), e1007060.

    PubMed  PubMed Central  Google Scholar 

  • Dawkins, R., & Carlisle, T. R. (1976). Parental investment, mate desertion, and a fallacy. Nature, 262, 131–133.

    Google Scholar 

  • De Knegt, H. J., Hengeveld, H. J., van Langevelde, F., de Boer, W. F., & Kirkman, K. P. (2007). Patch density determines movement patterns and foraging efficiency of large herbivores. Behavioral Ecology, 18(6), 1065–1072.

    Google Scholar 

  • Devries, D. R., Stein, R. A., & Chesson, P. L. (1989). Sunfish foraging among patches: The patch-departure decision. Animal Behavior, 37, 455–464.

    Google Scholar 

  • Edwards, A. M. (2011). Overturning conclusions of Lévy flight movement patterns by fishing boats and foraging animals. Ecology, 92(6), 1247–1257.

    PubMed  Google Scholar 

  • Edwards, A. M., Phillips, R. A., Watkins, N. W., Freeman, M. P., Murphy, E. J., Afanasyev, V., Buldyrev, S. V., da Luz, M. G. E., Raposo, E. P., Stanley, H. E., & Viswanathan, G. M. (2007). Revisiting Lévy flights search patterns of wandering albatrosses, bumblebees and deer. Nature, 449, 1044–1045.

    PubMed  Google Scholar 

  • Ehinger, K. A., & Wolfe, J. M. (2016). When is it time to move to the next map? Optimal foraging in guided visual search. Attention, Perception & Psychophysics, 78, 2135–2151.

    Google Scholar 

  • Eliassen, S. (2006) Foraging ecology and learning. Adaptive behavioral strategies and the value of information (Doctoral Thesis, University of Bergen, Norway). Recovered from https://users.soe.ucsc.edu/~msmangel/Eliassen%20Thesis.pdf

  • Eliassen, S., Jorgensen, C., Mangel, M., & Giske, J. (2007). Exploration or exploitation: Life expectancy changes the value of learning in foraging strategies. Oikos, 116(3), 513–523.

    Google Scholar 

  • Eliassen, S., Jorgensen, C., Mangel, M., & Giske, J. (2009). Quantifying the adaptive value of learning in foraging behavior. The American Naturalist, 174(4), 478–489.

    PubMed  Google Scholar 

  • Fauchald, P., & Tveraa, T. (2003). Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology, 84(2), 282–288.

    Google Scholar 

  • Ferguson, T. S. (1989). Who solved the secretary problem? Statistical Science, 4(3), 282–296.

    Google Scholar 

  • Ferreira, A. S., Raposo, E. P., Viswanathan, G. M., & Da Luz, M. G. E. (2014). The influence of environment on Lévy ransom search efficiency: Fractality and memory effects. Physica A: Statistical Mechanics and its Applications, 391(11), 3234–3246.

    Google Scholar 

  • Fougnie, D., Cormiea, S. M., Zhang, J., Alvarez, G. A., & Wolfe, J. M. (2015). Winter is coming: How humans forage in a temporally structured environment. Journal of Vision, 15(11), 1–11.

    PubMed  PubMed Central  Google Scholar 

  • Franken, I. H. A., van Strien, J. W., Nijs, I., & Muris, P. (2008). Impulsivity is associated with behavioral decision-making processes. Psychiatry Research, 158(2), 155–163.

    PubMed  Google Scholar 

  • Fronhofer, E. A., Hovestadt, T., & Poethke, H. J. (2013). From random walks to informed movement. Oikos, 122(6), 857–866.

    Google Scholar 

  • Fu, W. T. (2012). From Plato to the world wide web: Information foraging on the internet. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: Evolution, algorithms, and the brain (pp. 283–299). MIT Press.

  • Gil-Gómez de Liaño, B., Quirós-Godoy, M., Pérez-Hernández, E., Cain, M., & Wolfe, J. M. (2018). Understanding visual search and foraging in cognitive development. Journal of Vision, 18(10), 635.

    Google Scholar 

  • Gil-Gómez de Liaño, B., Quirós-Godoy, M., Pérez-Hernández, E., & Wolfe, J. M. (2020). Efficiency and accuracy of visual search develop at different rates from early childhood through early adulthood. Psychonomic Bulletin & Review, 27(3), 504–511.

    Google Scholar 

  • Giraldeau, L. A., & Kramer, D. L. (1982). The marginal value theorem: A quantitative test using load size variation in a central place forager, the Eastern chipmunk, Tamias striatus. Animal Behavior, 30, 1036–1042.

    Google Scholar 

  • Green, R. F. (1980). Bayesian birds: A simple example of Oaten’s stochastic model of optimal foraging. Theoretical Population Biology, 18, 244–256.

    Google Scholar 

  • Green, R. F. (1984). Stopping rules for optimal foragers. The American Naturalist, 123, 30–40.

    Google Scholar 

  • Grobelny, J., Michalski, R., & Weron, R. (2015) Is human visual activity in simple human-computer interaction search tasks a Lévy flight? In Proceedings of the 2nd international conference on physiological computing systems (pp. 67–71).

  • Grondin, S. (2010). Timing and time perception: A review of recent behavioral and neuroscience findings and theoretical directions. Attention, Perception & Psychophysics, 72(3), 561–582.

    Google Scholar 

  • Hamer, K. C., Humphreys, E. M., Magalhaes, M. C., Garthe, S., Hennicke, J., Peters, G., Gremillet, D., Skov, H., & Wanless, S. (2009). Fine-scale foraging behaviour of a medium-ranger marine predator. Journal of Animal Ecology, 78(4), 880–889.

    Google Scholar 

  • Haskell, D. G. (1997). Experiments and a model examining learning in the area-restricted search behavior of ferrets (Mustela putorius furo). Behavioral Ecology, 8(4), 448–455.

    Google Scholar 

  • Hayward, M. W., Ortmann, S., & Kowalczyk, R. (2015). Risk perception by endangered European bison Bison bonasus is context (condition) dependent. Landscape Ecology, 30(10), 2079–2093.

    Google Scholar 

  • Hemingway, C. T., Ryan, M. J., & Page, R. A. (2018). Cognitive constraints on optimal foraging in frog-eating bats. Animal Behavior, 143, 43–50.

    Google Scholar 

  • Higginson, A. D., Fawcett, T. W., Houston, A. I., & McNamara, J. M. (2018). Trust your gut: Using physiological states as a source of information is almost as effective as optimal Bayesian learning. Proceedings of the Royal Society B, 285, 20172411.

    PubMed  PubMed Central  Google Scholar 

  • Hill, S., Burrows, M. T., & Hughes, R. N. (2002). Adaptive search in juvenile plaice foraging for aggregated and dispersed prey. Journal of Fish Biology, 61(5), 1255–1267.

    Google Scholar 

  • Hills, T. T. (2006). Animal foraging and the evolution of goal-directed cognition. Cognitive Science, 30, 3–41.

    PubMed  Google Scholar 

  • Hills, T. T., & Adler, F. R. (2002). Time’s crooked arrow: Optimal foraging and rate-biased time perception. Animal Behaviour, 64(4), 589–597.

    Google Scholar 

  • Hills, T. T., & Hertwig, R. (2010). Information search in decisions from experience: Do our patterns of sampling foreshadow our decisions? Psychological Science, 21(12), 1787–1792.

    PubMed  Google Scholar 

  • Hills, T. T., Jones, M. N., & Todd, P. M. (2012). Optimal foraging in semantic memory. Psychological Review, 119(2), 431–440.

    PubMed  Google Scholar 

  • Hills, T. T., Kallf, C., & Wiener, J. M. (2013). Adaptive Lévy processes and area-restricted search in human foraging. PLoS ONE, 8(4), e60488.

    PubMed  PubMed Central  Google Scholar 

  • Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D., Couzin, I. D., & The Cognitive Research Group. (2015). Exploration versus exploitation in space, mind, and society. Trends in Cognitive Sciences, 19(1), 46–54.

    PubMed  Google Scholar 

  • Humphries, N. E., Queiroz, N., Ryer, J. R. M., Pade, N. G., Musyl, M. K., Schaefer, K. M., Fuller, D. W., Brunnschweiler, J. M., Doyle, T. K., Houghtom, J. D. R., Hays, G. C., Jones, C. S., Noble, L. R., Wearmouth, V. J., Southall, E. J., & Sims, D. W. (2010). Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature, 465, 1066–1069.

    PubMed  Google Scholar 

  • Humphries, N. E., Schaefer, K. M., Fuller, D. W., Phillips, G. E. M., Wilding, C., & Sims, D. W. (2016). Scale-dependent to scale-free: Daily behavioral switching and optimized searching in a marine predator. Animal Behavior, 113, 189–201.

    Google Scholar 

  • Humphries, N. E., & Sims, D. W. (2014). Optimal foraging strategies: Lévy walks balance searching and patch exploitation under a very broad range of conditions. Journal of Theoretical Biology, 358, 179–193.

    PubMed  Google Scholar 

  • Humphries, N. E., Weimerskirch, H., Queiroz, N., Southall, E. J., & Sims, D. W. (2012). Foraging success of biological Lévy flights recorded in situ. Proceedings of the National Academy of Sciences of the United States of America, 109(19), 7169–7174.

    PubMed  PubMed Central  Google Scholar 

  • Hutchinson, J. M. C., Stephens, D. W., Bateson, M., Couzin, I., Dukas, R., Giraldeau, L. A., Hills, T. T., Méry, F., & Winterhalder, B. (2012). Searching for fundamentals and commonalities of search. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive Search: Evolution, algorithms, and the brain (pp. 47–65). MIT Press.

  • Hutchinson, J. M. C., Wilke, A., & Todd, P. M. (2008). Patch leaving in humans: Can a generalist adapt its rules to dispersal across patches? Animal Behavior, 75, 1331–1349.

    Google Scholar 

  • Jacobs, R. A., & Kruschke, J. K. (2011). Bayesian learning theory applied to human cognition. Cognitive Science, 2(1), 8–21.

    PubMed  Google Scholar 

  • Johánnesson, Ó. I., Kristjánsson, Á., & Thornton, I. M. (2017). Are foraging patterns related to working memory and inhibitory control? Japanese Psychological Research, 59(2), 152–166.

    Google Scholar 

  • Jones, M., & Love, B. C. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34(4), 169–188.

    Google Scholar 

  • Kacelnik, A., & Marsh, B. (2002). Cost can increase preference in starlings. Animal Behaviour, 63(2), 245–250.

    Google Scholar 

  • Kagan, E., & Ben-Gal, I. (2015). Search and foraging: Individual motion and swarm dynamics. CRC Press.

  • Kallf, C., Hills, T. T., & Wiener, J. M. (2010). Human foraging behavior: A virtual reality investigation on area restricted search in humans. Proceedings of the Annual Meeting of the Cognitive Sciences Society, 32(32), 168–173.

    Google Scholar 

  • Kareiva, P., & Odell, G. (1987). Swarms of predators exhibit “preytaxis” if individual predators use area-restricted search. The American Naturalist, 130(2), 233–270.

    Google Scholar 

  • Keasar, T., Shmida, A., & Motro, U. (1996). Innate movement rules in foraging bees: Flight distances are affected by recent rewards and are correlated with choice of flower type. Behavioral Ecology and Sociobiology, 39(6), 381–388.

    Google Scholar 

  • Killeen, P. R., Palombo, G. M., Gottlob, L. R., & Beam, J. (1996). Bayesian analysis of foraging by pigeons (Columba livia). Journal of Experimental Psychology: Animal Behavior Processes, 22(4), 480–496.

    PubMed  Google Scholar 

  • Killeen, P. R., Smith, J. P., & Hanson, S. J. (1981). Central place foraging in Rattus norvegicus. Animal Behavior, 29, 64–70.

    Google Scholar 

  • Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences, 27(2), 712–719.

    PubMed  Google Scholar 

  • Koelega, H. S. (1992). Extraversion and vigilance: 30 years of inconsistencies. Psychological Bulletin, 112(2), 239–258.

    PubMed  Google Scholar 

  • Kölzsch, A., Alzate, A., Bartumeus, F., de Jager, M., Weerman, E. J., Hengeveld, G. M., Naguib, M., Nolet, B. A., & van de Koppel, J. (2015). Experimental evidence for inherent Lévy search behaviour in foraging animals. Proceedings of the Royal Society B, 282, 20150424.

    PubMed  PubMed Central  Google Scholar 

  • Krebs, J. R., Ryan, J. C., & Charnov, E. L. (1974). Hunting by expectation or optimal foraging? A study of patch use by chickadees. Animal Behavior, 22, 953–964.

    Google Scholar 

  • Kristjánsson, Á. (2000). In search of remembrance: Evidence for memory in visual search. Psychological Science, 11(4), 328–332.

    PubMed  Google Scholar 

  • Kristjánsson, Á., Björnsson, A. S., & Kristjánsson, T. (2020). Foraging with Anne Treisman: Features versus conjunctions, patch leaving and memory for foraged locations. Attention, Perception, & Psychophysics, 82, 818–831.

    Google Scholar 

  • Kristjánsson, Á., Johánnesson, Ó. I., & Thornton, I. M. (2014). Common attentional constraints in visual foraging. PLoS ONE, 9(6), e100752.

    PubMed  PubMed Central  Google Scholar 

  • Kristjánsson, Á., Ólafsdóttir, I. M., & Kristjánsson, T. (2019). Visual foraging tasks provide new insights into the orienting of visual attention: Methodological considerations. In S. Pollmann (Ed.), Spatial learning and attentional guidance (pp. 3–21). Humana.

  • Kristjánsson, T., & Kristjánsson, Á. (2018). Foraging through multiple targets reveals the flexibility of visual working memory. Acta Psychologica, 183, 108–115.

    PubMed  Google Scholar 

  • Kristjánsson, T., Thornton, I. M., Chetverikov, A., & Kristjánsson, Á. (2020). Dynamics of visual attention revealed in foraging tasks. Cognition, 194, 104032.

    PubMed  Google Scholar 

  • Kristjánsson, T., Thornton, I. M., & Kristjánsson, Á. (2018). Time limits during visual foraging reveal flexible working memory templates. Journal of Experimental Psychology: Human Perception and Performance, 44(6), 827–835.

    PubMed  Google Scholar 

  • Lee, M. D., & Wagenmakers, E. J. (2013). Bayesian cognitive models. University Press.

  • Leising, A. W., & Franks, P. J. S. (2002). Does Acartia clausi (Copepoda Calanoida) use an area-restricted search foraging strategy to find food? Hydrobiologia, 480(1–3), 193–207.

    Google Scholar 

  • Lenow, J. K., Constantino, S. M., Daw, N. D., & Phelps, E. A. (2017). Chronic and acute stress promote overexploitation in serial decision making. The Journal of Neuroscience, 37(23), 5681–5689.

    PubMed  PubMed Central  Google Scholar 

  • Lihoreau, M., Ings, T. C., Chittka, L., & Reynolds, A. M. (2016). Signatures of a global optimal searching strategy in the three-dimensional foraging flights of bumblebees. Scientific Reports, 6, 30401.

    PubMed  PubMed Central  Google Scholar 

  • Lode, T. (2000). Functional response and area-restricted search in a predator: Seasonal exploitation of anurans by the European polecat, Mustela putorius. Austral Ecology, 25(3), 223–231.

    Google Scholar 

  • Magalhaes, P., & White, K. G. (2014). The effect of a prior investment on choice: The sunk cost effect. Journal of Experimental Psychology: Animal Learning and Cognition, 40(1), 22–37.

    Google Scholar 

  • Marcus, G. F., & Davis, E. (2013). How robust are probabilistic models of higher-level cognition? Psychological Science, 24(12), 2351–2360.

    PubMed  Google Scholar 

  • Marell, A., Ball, J. P., & Hofgaard, A. (2002). Foraging and movement paths of female reindeer: Insights from fractal analysis, correlated random walks, and Lévy flights. Canadian Journal of Zoology, 80(5), 854–865.

    Google Scholar 

  • Marshall, H. H., Carter, A. J., Ashford, A., Rowcliffe, J. M., & Cowlishaw, G. (2013). How do foragers decide when to leave a patch? A test of alternative models under natural and experimental conditions. Journal of Animal Ecology, 82, 894–902.

    Google Scholar 

  • Mata, R., Wilke, A., & Czienskowski, U. (2009). Cognitive aging and adaptive foraging behavior. Journal of Gerontology: Psychological Sciences, 64B(4), 474–481.

    Google Scholar 

  • Mata, R., Wilke, A., & Czienskowski, U. (2013). Foraging across the life span: Is there a reduction in exploration with aging? Frontiers in Neuroscience, 7, 53.

    PubMed  PubMed Central  Google Scholar 

  • Mazur, J. E., & Vaughan, W. (1987). Molar optimization versus delayed reinforcement as explanations of choice between fixed-ratio and progressive-ratio schedules. Journal of the Experimental Analysis of Behavior, 48, 251–261.

    PubMed  PubMed Central  Google Scholar 

  • McArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. The American Naturalist, 100, 603–609.

    Google Scholar 

  • McEvoy, J. F., Hall, G. P., & McDonald, P. G. (2019). Movements of Australian Wood Ducks (Chenonetta jubata) in an agricultural landcape. Emu-Austral Ornithology, 119(2), 147–156.

    Google Scholar 

  • McNair, J. N. (1982). Optimal giving-up time rules and the marginal value theorem. The American Naturalist, 119(4), 511–529.

    Google Scholar 

  • McNamara, J. (1982). Optimal patch use in a stochastic environment. Theoretical Population Biology, 21, 269–288.

    Google Scholar 

  • McNamara, J., Green, R., & Olsson, O. (2006). Bayes’ theorem and its application in animal behavior. Oikos, 112, 243–251.

    Google Scholar 

  • McNamara, J., & Houston, A. I. (1980). The application of statistical decision theory to animal behavior. Journal of Theoretical Biology, 85, 673–690.

    PubMed  Google Scholar 

  • Mehlhorn, K., Newell, B. R., Todd, P. M., Lee, M. D., Morgan, K., Braithwaite, V. A., Hausmann, D., Fiedler, K., & Gonzalez, C. (2015). Unpacking the exploration-exploitation tradeoff: A synthesis of human an animal literatures. Decision, 2(3), 191.

    Google Scholar 

  • Mekern, V. N., Sjoerds, Z., & Hommel, B. (2019). How metacontrol biases and adaptivity impact performance in cognitive search tasks. Cognition, 182, 251–259.

    PubMed  Google Scholar 

  • Miramontes, O., De Souza, O., Hernández, D., & Ceccon, E. (2012). Non-Lévy mobility patterns of Mexican Me’Phaa peasants searching for fuel wood. Human Ecology, 40(2), 167–174.

    Google Scholar 

  • Newton, T., Slade, P., Butler, N., & Murphy, P. (1992). Personality and performance on a simple visual search task. Personality and Individual Differences, 13(3), 381–382.

    Google Scholar 

  • Nolet, B. A., & Mooij, W. M. (2002). Search paths of swans foraging on spatially autocorrelated tubers. Journal of Animal Ecology, 71(3), 451–462.

    Google Scholar 

  • Nolting, B. C. (2013) Random search models of foraging behavior: Theory, simulation, and observation. Doctoral Dissertation. University of Nebraska-Lincoln.

  • Nolting, B. C., Hinkelman, T. M., Brassil, C. E., & Tehumberg, B. (2015). Composite random search strategies based on non-directional sensory cues. Ecological Complexity, 22, 126–138.

    Google Scholar 

  • Nonacs, P. (2001). State dependent behavior and the marginal value theorem. Behavioral Ecology, 12(1), 71–83.

    Google Scholar 

  • Nonacs, P., & Soriano, J. L. (1998). Patch sampling behaviour and future foraging expectations in Argentine Ants, linepithema humile. Animal Behavior, 55(3), 519–527.

    Google Scholar 

  • Oaten, A. (1977). Optimal foraging in patches: A case for stochasticity. Theoretical Population Biology, 12, 263–285.

    PubMed  Google Scholar 

  • Ólafsdóttir, I. M., Gestsdóttir, S., & Kristjánsson, A. (2019). Visual foraging and executive functions: A developmental perspective. Acta Psychologica, 193, 203–213. https://doi.org/10.1016/j.actpsy.2019.01.005

    Article  PubMed  Google Scholar 

  • Olivers, C. N. L., Peters, J., Houtkamp, R., & Roelfsema, P. R. (2011). Different states in visual working memory: When it guides attention and when it does not. Trends in Cognitive Science, 15(7), 327–334.

    Google Scholar 

  • Olsson, O., & Brown, J. S. (2006). The foraging benefits of information and the penalty of ignorance. Oikos, 112, 260–273.

    Google Scholar 

  • Olsson, O., & Brown, J. S. (2010). Smart, smarter, smartest: foraging information states and coexistence. Oikos, 119, 292–303.

    Google Scholar 

  • Olsson, O., & Holmgren, N. M. A. (1998). The survival-rate-maximizing policy for Bayesian foragers: Wait for good news. Behavioral Ecology, 9(4), 345–353.

    Google Scholar 

  • Osborne, J. L., Smith, A., Clark, S. J., Reynolds, D. R., Barron, M. C., Lim, K. S., & Reynolds, A. M. (2013). The ontogeny of bumblebee flight trajectories: From naïve explorers to expert foragers. PLoS ONE, 8(11), e78681.

    PubMed  PubMed Central  Google Scholar 

  • Pacheco-Cobos, L., Winterhalder, B., Cuatianquiz-Lima, C., Rosetti, M. F., Hudson, R., & Ross, C. (2019). Nahua mushroom gatherers use area-restricted search strategies that conform to marginal value theorem predictions. Proceedings of the National Academy of Sciences, 116(21), 10339–10347.

    Google Scholar 

  • Pachur, T., Raaijmakers, J. G. W., Davelaar, E. J., Daw, N. D., Dougherty, M. R., Hommel, B., Lee, M. D., Polyn, S. M., Ridderinkhoff, K. R., Todd, P. M., & Wolfe, J. M. (2012). Unpacking cognitive search: Mechanisms and processes. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: Evolution, algorithms, and the brain (pp. 237–253). MIT Press.

  • Paiva, V. H., Geraldes, P., Ramirez, I., Garthe, S., & Ramos, J. A. (2010). How area-restricted search of a pelagic seabird changes while performing a dual foraging strategy. Oikos, 119(9), 1423–1434.

    Google Scholar 

  • Palyulin, V. V., Chechkin, A. V., & Metzner, R. (2014). Lévy flights do not always optimize random blind search for sparse targets. Proceedings of the National Academy of Sciences, 111(8), 2931–2936.

    Google Scholar 

  • Papastamatiou, Y. P., Desalles, P. A., & McCauley, D. J. (2012). Area-restricted searching by manta rays and their response to spatial scale in lagoon habitats. Marine Ecology Progress Series, 456, 233–244.

    Google Scholar 

  • Pattison, K. F., Zentall, T. R., & Watanabe, S. (2014). Sunk cost: Pigeons (Columba livia), too, show bias to complete a task rather than shift to another. Journal of Comparative Psychology, 126(1), 1–9.

    Google Scholar 

  • Payne, J. W. (1976). Task complexity and contingent processing in decision making: An information search and protocol analysis. Organizational Behavior and Human Performance, 16(2), 366–387.

    Google Scholar 

  • Peltier, C., & Becker, M. W. (2017). Individual differences predict low prevalence visual search performance. Cognitive Research: Principles and Implications, 2(5), 1–11.

    Google Scholar 

  • Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12(4), 287–292.

    PubMed  Google Scholar 

  • Pierce, G. J., & Ollason, J. G. (1987). Eight reasons why optimal foraging theory is a complete waste of time. Oikos, 49, 111–117.

    Google Scholar 

  • Pinaud, C., & Weimerskirch, H. (2007). At-sea distribution and scale-dependent foraging behaviour of petrels and albatrosses: A comparative study. Journal of Animal Ecology, 76(1), 9–19.

    Google Scholar 

  • Plank, M. J., & James, A. (2008). Optimal foraging: Lévy pattern or process? Journal of the Royal Society Interface, 5, 26.

    Google Scholar 

  • Pyke, G. H. (1978). Optimal Foraging in hummingbirds: Testing the Marginal Value Theorem. The American Zoologist, 18, 739–752.

    Google Scholar 

  • Pyke, G. H. (2015). Understanding movements of organisms: It’s time to abandon the Lévy-foraging hypothesis. Methods in Ecology and Evolution, 6(1), 1–16.

    Google Scholar 

  • Pyke, G. H., Pulliam, H. R., & Charnov, E. L. (1977). Optimal foraging: A selective review of theory and tests. The Quarterly Review of Biology, 52(2), 137–154.

    Google Scholar 

  • Raichlen, D. A., Wood, B. M., Gordon, A. D., Mabulla, A. Z. P., Marloew, F. W., & Pontzer, H. (2014). Evidence of Lévy walk foraging patterns in human hunter-gatherers. Proceedings of the National Academy of Sciences of the United States of America, 111(2), 728–733.

    PubMed  Google Scholar 

  • Ramos-Fernández, G., Mateos, J. L., Miramontes, O., Cocho, G., Larralde, H., & Ayala-Orozco, B. (2004). Lévy walk patterns in the foraging movement of spider monkeys (Ateles geoffroyi). Behavioral Ecology and Sociobiology, 55(3), 223–230.

    Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.

    Google Scholar 

  • Reynolds, A. (2012). Distinguishing between Lévy walks and strong alternative models. Ecology, 93(5), 1228–1233.

    PubMed  Google Scholar 

  • Reynolds, A. (2018) Current status and future directions of Lévy walk research. Biology Open, 7(1), bio030106.

    PubMed  PubMed Central  Google Scholar 

  • Reynolds, A. M., Paiva, V. H., Cecere, J. G., & Focardi, S. (2016). Lévy patterns in seabirds are multifaceted describing both spatial and temporal patterning. Frontiers in Zoology, 13(29), 1–12.

    Google Scholar 

  • Reynolds, A. M., Swain, J. L., Smith, A. D., Martin, A. P., & Osborne, J. L. (2009). Honeybees use a Lévy flight search strategy and odour-mediated anemotaxis to relocate food sources. Behavioral Ecology and Sociobiology, 64(1), 115–123.

    Google Scholar 

  • Ross, C., Pacheco-Cobos, L., & Winterhalder, B. (2018). A general model of forager search: Adaptive encounter-conditional heuristics outperform Lévy flights in the search for patchily distributed prey. Journal of Theoretical Biology, 455, 357–369.

    PubMed  Google Scholar 

  • Ross, C., & Winterhalder, B. (2018). Evidence for encounter-conditional, area-restricted search in a preliminary study of Colombian blowgun hunters. PLoS ONE, 13(12), e0207633.

    PubMed  PubMed Central  Google Scholar 

  • Samu, F. (1993). Wolf spider feeding strategies: Optimality of prey consumption in Pardosa Hortensis. Oecologia, 94(1), 139–145.

    PubMed  Google Scholar 

  • Sang, K. (2017) Modeling exploration/exploitation behavior and the effect of individual differences. Doctoral Dissertation. Indiana University.

  • Schreirer, A. L., & Grove, M. (2014). Recurrent patterning in the daily foraging routes of Hamadryas baboons (Papyo hamadryas): Spatial memory in large-scale versus small-scale space. American Journal of Primatology, 76(5), 421–435.

    Google Scholar 

  • Shlesinger, M. F. (2009). Random searching. Journal of Physics A: Mathematical and Theoretical, 42(43), 434001.

    Google Scholar 

  • Shlesinger, M. F., & Klafter, J. (1986). Lévy walks versus Lévy flights. In H. E. Stanley & N. Ostrowsky (Eds.), On growth and form. Fractal and non-fractal patterns in physics. Martinus Nijhoff Publishers.

  • Shore, D. I., & Klein, R. M. (2000). On the manifestations of memory in visual search. Spatial Vision, 14(1), 59–75.

    PubMed  Google Scholar 

  • Sims, D. W., Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J. A., Pitchford, J. W., James, A., Ahmed, M. Z., Brierley, A. S., Hindell, M. A., Morrit, D., Musyl, M. K., Righton, D., Shepard, E. L. C., Wearmouth, V. J., Wilson, R. P., Witt, M. J., & Metcalfe, J. D. (2008). Scaling laws of marine predator search behavior. Nature, 451, 1098.

    PubMed  Google Scholar 

  • Soman, D. (2001). The mental accounting of sunk time costs: Why time is not like money. Journal of Behavioral Decision Making, 14(3), 169–185.

    Google Scholar 

  • Stephens, D. W. (2008). Decision ecology: Foraging and the ecology of animal decision making. Cognitive, Affective & Behavioral Neuroscience, 8(4), 475–484.

    Google Scholar 

  • Stephens, D. W., & Charnov, E. (1982). Optimal foraging: Some simple stochastic models. Behavioral Ecology and Sociobiology, 10, 215–263.

    Google Scholar 

  • Stephens, D. W., Couzin, I., & Giraldeau, L. A. (2012). Ecological and behavioral approaches to search behavior. In P. M. Todd, T. T. Hills, & T. W. Robbins (Eds.), Cognitive search: evolution, algorithms, and the brain (pp. 25–45). MIT Press.

  • Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton University Press.

  • Tentelier, C., Lacroix, M. N., & Fauvergue, X. (2009). Inflexible wasps: The aphid parasitoid Lysiphlebus testaceipes does not track multiple changes in habitat profitability. Animal Behaviour, 77(1), 95–100.

    Google Scholar 

  • Thiel, A., & Hoffmeister, T. S. (2004). Knowing your habitat: Linking patch-encounter rate and patch exploitation rate in parasitoids. Behavioral Ecology, 15(3), 419–425.

    Google Scholar 

  • Thums, M., Bradshaw, C. J. A., & Hindell, M. A. (2011). In situ measures of foraging success and prey encounter reveal marine habitat-dependent search strategies. Ecology, 92(6), 1258–1270.

    PubMed  Google Scholar 

  • Thums, M., Bradshaw, C. J. A., Sumner, M. D., Horsburgh, J. M., & Hindell, M. A. (2012). Depletion of deep marine food patches forces divers to give up early. Journal of Animal Ecology, 82, 72–83.

    Google Scholar 

  • Toscano, B. J., Gownaris, N. J., Heerhartz, S. M., & Monaco, C. J. (2016). Personality, foraging behavior and specialization: Integrating behavioral and food web ecology at the individual level. Oecologia, 182(1), 55–69.

    PubMed  Google Scholar 

  • Turrin, C., Fagan, N. A., Dal Monte, O., & Chang, S. W. C. (2017). Social resources foraging is guided by the principles of marginal value theorem. Scientific Reports, 7, 1–13.

    Google Scholar 

  • Valone, T. J. (2006). Are animals capable of Bayesian updating? An empirical review. Oikos, 112, 252–259.

    Google Scholar 

  • Van Gils, J. A. (2010). State-dependent Bayesian foraging on spatially autocorrelated food distributions. Oikos, 119, 237–244.

    Google Scholar 

  • Viswanathan, G. M., Afanasiev, V., Buldyrev, S. V., Murphy, E. J., Prince, P. A., & Stanley, H. E. (1996). Lévy flight search patterns of wandering albatrosses. Nature, 381, 413–415.

    Google Scholar 

  • Viswanathan, G. M., Buldyrev, S. V., Havlin, S., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (1999). Optimizing the success of random searches. Nature, 401, 911–914.

    PubMed  Google Scholar 

  • Viswanathan, G. M., da Luz, M. G. E., Raposo, E. P., & Stanley, H. E. (2011). The physics of foraging. An introduction to random searches and biological encounters. University Press.

  • Viswanathan, G. M., Raposo, E. P., & da Luz, M. G. E. (2008). Lévy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Reviews, 5, 133–150.

    Google Scholar 

  • Volchenkov, D., Helbach, J., Tscherepanow, M., & Kühnel, S. (2013). Exploration-exploitation trade-off features a saltatory search behavior. Journal of the Royal Society Interface, 10, 20130352.

    PubMed Central  Google Scholar 

  • Von Helversen, B., Mata, R., Samanez-Larkin, G. R., & Wilke, A. (2018). Foraging, exploration or search? On the (lack of) convergent validity between three behavioral paradigms. Evolutionary Behavioral Sciences, 12(3), 152–162.

    Google Scholar 

  • Wajnberg, E. (2012). Multi-objective behavioural mechanisms are adopted by foraging animals to achieve several optimality goals simultaneously. Journal of Animal Ecology, 81, 503–511.

    Google Scholar 

  • Weimerskirch, H., Pinaud, D., Pawlowski, F., & Bost, C. A. (2007). Does prey capture induce area-restricted search? A fine-scale study using GPS in a marine predator, the wandering albatross. The American Naturalist, 170(5), 734–743.

    PubMed  Google Scholar 

  • Weissburg, M. (1993). Sex and the single forager: Gender-specific energy maximization strategies in fiddler crabs. Ecology, 74(2), 279–291.

    Google Scholar 

  • Wiegand, I., Seidel, C., & Wolfe, J. M. (2019). Hybrid foraging search in younger and older age. Psychology and aging, 34(6), 805–820.

    PubMed  PubMed Central  Google Scholar 

  • Wilke, A., Hutchinson, J. M. C., Todd, P. M., & Czienskowski, U. (2009). Fishing for the right words: Decision rules for human foraging behavior in internal search tasks. Cognitive Science, 33, 497–529.

    PubMed  Google Scholar 

  • Wittman, M., & Paulus, M. P. (2008). Decision making, impulsivity, and time perception. Trends in Cognitive Sciences, 12(1), 7–12.

    Google Scholar 

  • Wolfe, J. M. (2007). Guided search 4.0. Current progress with a model of visual search. In W. D. Gray (Ed.), Integrated models of cognitive systems (pp. 99–119). University Press.

  • Wolfe, J. M. (2012). Saved by a log: How do humans perform hybrid visual and memory search? Psychological Science, 23(7), 698–703.

    PubMed  Google Scholar 

  • Wolfe, J. M. (2013). When is it time to move to the next raspberry bush? Foraging rules in human visual search. Journal of Vision, 13(3), 1–17.

    Google Scholar 

  • Wolfe, J. M. (2020). Guided Search 6.0: An upgrade with five forms of guidance, three types of functional visual fields, and two, distinct search templates. Journal of Vision, 20(11), 303.

    Google Scholar 

  • Wolfe, J. M., Aizenman, A. M., Boettcher, S. E. P., & Cain, M. S. (2016). Hybrid foraging search: Searching for multiple instances of multiple types of targets. Vision Research, 119, 50–59.

    PubMed  PubMed Central  Google Scholar 

  • Wolfe, J. M., Cain, M. S., & Aizenman, A. M. (2019). Guidance and selection history in hybrid visual foraging search. Attention, Perception, & Psychophysics, 81(3), 637–653.

    Google Scholar 

  • Wolfe, J. M., Cain, M. S., & Alaoui-Soce, A. (2018). Hybrid value foraging: How the value of targets shapes human foraging behavior. Attention, Perception, & Psychophysics, 80, 609–621.

    Google Scholar 

  • Wolfe, J. M., & Horowitz, T. S. (2017). Five factors that guide attention in visual search. Nature Human Behaviour, 1(3), 1–8.

    Google Scholar 

  • Woodman, G. F., & Chun, M. M. (2006). The role of working memory and long-term memory in visual search. Visual Cognition, 14(4–8), 808–830.

    Google Scholar 

  • Wosniak, M. E., Raposo, E. P., Viswanathan, G. M., & Da Luz, M. G. E. (2015). Efficient search of multiple types of targets. Physical Review E, 92, 062135.

    Google Scholar 

  • Wu, C. C., & Wolfe, J. M. (2019). Eye movements in medical image perception: A selective review of past, present and future. Vision, 3, 32.

    PubMed Central  Google Scholar 

  • Zaburdaev, V., Denisov, S., & Klafter, J. (2015). Lévy walks. Reviews of Modern Physics, 87(2), 483–530.

    Google Scholar 

  • Zermatten, A., van der Linden, M., d’Acremont, M., Jermann, F., & Bechara, A. (2005). Impulsivity and decision making. Journal of Nervous and Mental Disease, 193(10), 647–650.

    Google Scholar 

  • Zhang, J., Gong, X., Fougnie, D., & Wolfe, J. M. (2015). Using the past to anticipate the future in human foraging behavior. Vision Research, 111, 66–74.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, K., Jurdak, R., Liu, J., Westcott, D., Kusy, B., Parry, H., Sommer, P., & McKeown, A. (2015). Optimal Lévy-flight foraging in a finite landscape. Journal of the Royal Society: Interface, 12, 1–12.

    Google Scholar 

  • Zimmer, I., Wilson, R. P., Gilbert, C., Beaulieu, M., Ancel, A., & Ploetz, J. (2008). Foraging movements of emperor penguins at pointe geologie Antarctica. Polar Biology, 31(2), 229–243.

    Google Scholar 

Download references

Funding

The present work has been supported by the financed research project of the “Ministerio de Economía y Competitividad de España, Dirección General de Investigación Científica y Técnica”. Ref. PSI2015-69358-R. Granted to IP Beatriz Gil-Gómez de Liaño.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Bella-Fernández.

Ethics declarations

Conflict of interest

Marcos Bella-Fernández declares that he has no conflict of interest. Manuel Suero Suñé declares that he has no conflict of interest. Beatriz Gil-Gómez de Liaño declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bella-Fernández, M., Suero Suñé, M. & Gil-Gómez de Liaño, B. Foraging behavior in visual search: A review of theoretical and mathematical models in humans and animals. Psychological Research 86, 331–349 (2022). https://doi.org/10.1007/s00426-021-01499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00426-021-01499-1

Navigation