Skip to main content
Log in

Interlayer Dilution Zone Elemental Profiling and Microhardness Measurements for Individual Laser Clads

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

A detailed study of microstructure and microhardness distribution at clad-to-substrate interlayer dilution zone as well as elemental profiling were carried out for individual laser clads. Tungsten carbide (44 712-10) and nickel alloy (1560) powders were used for individual clad synthesis at the surface of low alloy steel by coaxial laser cladding technique. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) revealed partial tungsten carbide (WC) melting and secondary chromium carbides formation near WC grains. Iron and nickel elemental profiles were quantified by EDX technique to estimate interlayer dilution zone dimensions. Interlayer zone depth in the clad center increased from 15 to 80 µm when laser power was changed from 0.8 to 1.5 kW while at the outer clad regions it varied in 3–20 µm range. Interlayer clad-to-substrate zone microhardness study revealed a non-uniform dependence of hardness distribution for single clads synthesized with varying laser power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. J. Pinkerton, “Lasers in additive manufacturing,” Opt. Laser Technol. 78, 25–32 (2016). https://doi.org/10.1016/j.optlastec.2015.09.025

    Article  Google Scholar 

  2. F. Shu, Z. Tian, H. Zhao, W. He, S. Sui, and B. Liu, “Synthesis of amorphous coating by laser cladding multi-layer Co-based self-fluxed alloy powder,” Mater. Lett. 176, 306–309 (2016). https://doi.org/10.1016/j.matlet.2016.04.118

    Article  CAS  Google Scholar 

  3. I. Hemmati, V. Ocelík, and J. T. M. De Hosson, “Dilution effects in laser cladding of Ni–Cr–B–Si–C hardfacing alloys,” Mater. Lett. 84, 69–72 (2012). https://doi.org/10.1016/j.matlet.2012.06.054

    Article  CAS  Google Scholar 

  4. X. J. Yan, H. Gugel, S. Huth, and W. Theisen, “Microstructures and properties of laser cladding NiTi alloy with W for biomedical applications,” Mater. Lett. 65, 2934–2936 (2011). https://doi.org/10.1016/j.matlet.2011.06.040

    Article  CAS  Google Scholar 

  5. L. Zhong, Y. Yan, V.E. Ovcharenko, X. Cai, X. Zhang, and Y. Xu, “Microstructural and mechanical properties of in situ WC–Fe/Fe composites,” J. Mater. Eng. Perform. 24, 4561–4568 (2015). https://doi.org/10.1007/s11665-015-1742-4

    Article  CAS  Google Scholar 

  6. C. Cai, L. Li, W. Tao, G. Peng, and X. Wang, “Weld bead size, microstructure and corrosion behavior of zirconium alloys joints welded by pulsed laser spot welding,” J. Mater. Eng. Perform. 25, 3783–3792 (2016). https://doi.org/10.1007/s11665-016-2250-x

    Article  CAS  Google Scholar 

  7. A. M. Orishich, A. G. Malikov, V. D. Shelyagin, V. Y. Khaskin, and A. A. Chayka, “Optimisation of the processes of laser, microplasma and hybrid laser–microplasma welding of aluminium alloys,” Weld. Int. 30, 957–961 (2016). https://doi.org/10.1080/09507116.2016.1157338

    Article  Google Scholar 

  8. V. Y. Haskin, V. D. Shelyagin, and A. V. Bernatsky, “Modern state and challenges for development of laser and hybrid surfacing technologies,” Pat. Weld. J. 26–29 (2015).

  9. V. P. Biryukov, D. Y. Tatarkin, E. V. Khriptovich, and A. A. Fishkov, “Determination of influence of laser welding modes and powder material composition on wear resistance of coatings,” J. Mach. Manuf. Reliab. 46, 53–56 (2017). https://doi.org/10.3103/S1052618817010034

    Article  Google Scholar 

  10. V. P. Biryukov, “Effect of laser strengthening and beam defocusing on the geometrical parameters of hardened zones,” J. Mach. Manuf. Reliab. 47, 550–556 (2018). https://doi.org/10.3103/S1052618818660019

    Article  Google Scholar 

  11. V. Biryukov, A. Fishkill, D. Tatarkin, E. Khriptovich, D. Bykovsky, and V. Petrovsky, Influence of modes of laser cladding and composition of powder materials on abrasion resistance of the coatings,” Photonics 3, 32–41 (2016).

    Article  Google Scholar 

  12. V. G. Gilev and E. A. Morozov, “Laser melt injection of austenitic cast iron Ch16D7GKh with titanium,” Russ. J. Non-Ferrous Met. 57, 625–632 (2016). https://doi.org/10.3103/S1067821216060055

    Article  Google Scholar 

  13. P. Y. Peretyagin, I. V. Zhirnov, Y. G. Vladimirov, T. V. Tarasova, and A. A. Okun’kova, “Track geometry in selective laser melting,” Russ. Eng. Res. 35, 473–476 (2015). https://doi.org/10.3103/S1068798X15060143

    Article  Google Scholar 

  14. I. Y. Smurov, A. A. Okun’kova, M. P. Pavlov, and A. P. Nazarov, Optimal configuration of equipment for selective laser melting, Russ. Eng. Res. 33, 495–498 (2013). https://doi.org/10.3103/S1068798X13080145

    Article  Google Scholar 

  15. H. Peng, C. Liu, H. Guo, Y. Yuan, S. Gong, and H. Xu, “Fabrication of WCp/NiBSi metal matrix composite by electron beam melting,” Mater. Sci. Eng., A 666, 320–323 (2016). https://doi.org/10.1016/j.msea.2016.04.079

    Article  CAS  Google Scholar 

  16. K. Van Acker, D. Vanhoyweghen, R. Persoons, and J. Vangrunderbeek, “Influence of tungsten carbide particle size and distribution on the wear resistance of laser clad WC/Ni coatings,” Wear 258, 194–202 (2005). https://doi.org/10.1016/j.wear.2004.09.041

    Article  CAS  Google Scholar 

  17. R. A. Savrai, A. V. Makarov, N. N. Soboleva, I. Y. Malygina, and A. L. Osintseva, “The behavior of gas powder laser clad NiCrBSi coatings under contact loading,” J. Mater. Eng. Perform. 25, 1068–1075 (2016). https://doi.org/10.1007/s11665-016-1925-7

    Article  CAS  Google Scholar 

  18. H. F. El-Labban, E. R. I. Mahmoud, and H. Al-Wadai, “Laser cladding of Ti–6AI–4V alloy with vanadium carbide particles,” Adv. Prod. Eng. Manage. 9, 159 (2014).

    Google Scholar 

  19. M. Dhanda, B. Haldar, and P. Saha, “Development and characterization of hard and wear resistant MMC coating on Ti-6Al-4V substrate by laser cladding,” Procedia Mater. Sci. 6, 1226–1232 (2014). https://doi.org/10.1016/j.mspro.2014.07.196

    Article  CAS  Google Scholar 

  20. C. Zhenda, L. Leong Chew, and Q. Ming, ”Laser cladding of WC-Ni composite,” J. Mater. Process. Technol. 62, 321–323 (1996). https://doi.org/10.1016/S0924-0136(96)02428-4

    Article  Google Scholar 

  21. Q. Ming, L. C. Lim, and Z. D. Chen, “Laser cladding of nickel-based hardfacing alloys,” Surf. Coat. Technol. 106, 174–182 (1998). https://doi.org/10.1016/S0257-8972(98)00524-6

    Article  CAS  Google Scholar 

  22. M. J. Tobar, C. Álvarez, J. M. Amado, G. Rodríguez, and A. Yáñez, “Morphology and characterization of laser clad composite NiCrBSi–WC coatings on stainless steel,” Surf. Coat. Technol. 200, 6313–6317 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.093

    Article  CAS  Google Scholar 

  23. C. P. Paul, H. Alemohammad, E. Toyserkani, A. Khajepour, and S. Corbin, “Cladding of WC–12 Co on low carbon steel using a pulsed Nd:YAG laser,” Mater. Sci. Eng., A 464, 170–176 (2007). https://doi.org/10.1016/j.msea.2007.01.132

    Article  CAS  Google Scholar 

  24. A. G. Grigoryants, A. Y. Stavertiy, K .O. Bazaleeva, T. Y. Yudina, N. A. Smirnova, R. S. Tretyakov, and A. I. Misyurov, “Laser surfacing of nickel-based composite war-resisting coatings reinforced with tungsten carbide,” Weld. Int., 1–6 (2016). https://doi.org/10.1080/09507116.2016.1213039

  25. G.L. Goswami, S. Kumar, R. Galun, B.L. Mordike, “Laser cladding of Nickel based carbide dispersion alloys for hardfacing applications,” Lasers Eng. 13, 35–44 (2003).

    CAS  Google Scholar 

  26. A. Ghabchi, M. Rombouts, K. Holmberg, and R. Persoons, “Microstructure and failure modes during scratch testing of laser cladded WC–NiCrBSi coatings with spherical and angular carbides,” Tribol.-Mater., Surf. Interfaces 7, 13–20 (2013). https://doi.org/10.1179/1751584X13Y.0000000023

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the Russian Science Foundation (agreement no. 16-19-10656) for cladding experiments and sample cross-section preparation. M.N. Filippov thanks funding of the Russian Foundation for Basic Research (project 19-03-00271) for SEM and EDX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Lednev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lednev, V.N., Sdvizhenskii, P.A., Filippov, M.N. et al. Interlayer Dilution Zone Elemental Profiling and Microhardness Measurements for Individual Laser Clads. Phys. Metals Metallogr. 121, 1473–1477 (2020). https://doi.org/10.1134/S0031918X20130098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20130098

Keywords:

Navigation