Skip to main content
Log in

Investigation of TiO2 Addition on Tribological and Corrosion Behavior of Flame Sprayed Al Coating

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The flame sprayed aluminum coatings are widely used in the marine industries due to considerable corrosion resistance, but their tribological weakness is a drawback. In this study, Al and Al–(5–10 and 15%)TiO2 composites were flame sprayed on carbon steel to combine corrosion and wear resistance. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were used to study the coatings and worn and corroded surfaces. Polarization and electrochemical impedance spectroscopy (EIS) tests in simulated 3.5% NaCl solution were used to investigate corrosion behavior of coatings. Also, the pin-on-disc test was used to investigate tribological behavior. The tribological study showed that the composite coating of 5 and 10% TiO2 had better wear resistance than pure aluminum and Al–15% TiO2 coatings. The main wear mechanism in composite coatings was delamination, while pure aluminum coating delamination and adhesion mechanisms were dominant. The corrosion study showed that the corrosion potential of Al‒10% TiO2 coating is nobler than other coats, and pitting corrosion was realized via the dominant corrosion mechanism in all coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. F. Ahnia, Y. Khelfaoui, B. Zaid, F.J. Perez, D. Miroud, A. Si Ahmed, and G. Alcala, “Thermally sprayed Al/Mo coatings on industrial steel E335 and effects on electrochemical parameters in simulated acid rain,” J. Alloys Compd. 696, 1282–1291(2017).

    Article  CAS  Google Scholar 

  2. A. Fattah-Alhosseini, H. Yazdani Khan, and A. Heidarpour, “Comparison of anti-corrosive properties between hot alkaline nitrate blackening and hydrothermal blackening routes,” J. Alloys Compd. 676, 474–480 (2016).

    Article  CAS  Google Scholar 

  3. J. Huang, Y. Liu, J. Yuan, and H. Li, “Al/Al2O3 composite coating deposited by flame spraying for marine applications: Alumina skeleton enhances anti-corrosion and wear performances,” J. Therm. Spray Technol. 23, 676–683 (2014).

    Article  CAS  Google Scholar 

  4. X. Chen, J. Yuan, J. Huang, K. Ren, Y. Liu, S. Lu, and H. Li, “Large-scale fabrication of superhydrophobic polyurethane/nano-Al2O3 coatings by suspension flame spraying for anti-corrosion applications,” Appl. Surf. Sci. 311, 864–869 (2014).

    Article  CAS  Google Scholar 

  5. K.A. Habib, J.J. Saura, C. Ferrer, M.S. Damra, E. Giménez, and L. Cabedo, “Comparison of flame sprayed Al2O3/TiO2 coatings: Their microstructure, mechanical properties and tribology behavior,” Surf. Coat. Technol. 201, 1436–1443 (2006).

    Article  CAS  Google Scholar 

  6. D. Chaliampalias, G. Vourlias, E. Pavlidou, G. Stergioudis, S. Skolianos, and K. Chrissafis, “High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings,” Appl. Surf. Sci. 255, 3104–3111 (2008).

    Article  CAS  Google Scholar 

  7. Z. Jia, Y. Liu, Y. Wang, Y. Gong, P. Jin, X. Suo, and H. Li, “Flame spray fabrication of polyethylene-Cu composite coatings with enwrapped structures: A new route for constructing antifouling layers,” Surf. Coat. Technol. 309, 872–879 (2017).

    Article  CAS  Google Scholar 

  8. P. L. Fauchais, J. V. R. Heberlein, and M. I. Boulos, Thermal Spray Fundamentals (Springer, Berlin, 2014).

    Book  Google Scholar 

  9. J. Xu, B. Zou, X. Fan, S. Zhao, Y. Hui, Y. Wang, X. Zhou, X. Cai, S. Tao, H. Ma, and X. Cao, “Reactive plasma spraying synthesis and characterization of TiB2–TiC–Al2O3/Al composite coatings on a magnesium alloy,” J. Alloys Compd. 596, 10–18 (2014).

    Article  CAS  Google Scholar 

  10. D. Chaliampalias, S. Andronis, N. Pliatsikas, E. Pavlidou, D. Tsipas, S. Skolianos, K. Chrissafis, G. Stergioudis, P. Patsalas, and G. Vourlias, “Formation and oxidation resistance of Al/Ni coatings on low carbon steel by flame spray,” Surf. Coat. Technol. 255, 62–68 (2014).

    Article  CAS  Google Scholar 

  11. N. Kahraman and B. Gülenç, “Abrasive wear behavior of powder flame sprayed coatings on steel substrates,” Mater. Des. 23, 721–725 (2002).

    Article  CAS  Google Scholar 

  12. A. Nistal, E. García, C. García-Diego, M. I. Osendi, and P. Miranzo, “Flame spraying of adherent silicon coatings on SiC substrates,” Surf. Coat. Technol. 270, 8–15 (2015).

    Article  CAS  Google Scholar 

  13. R. Jamshidi, O. Bayat, and A. Heidarpour, “Tribological and corrosion behavior of flame sprayed Al–10 wt % Ti3SiC2 composite coating on carbon steel,” Surf. Coat. Technol. 358, 1–10 (2018).

    Article  Google Scholar 

  14. S. Kumar, S. K. Reddy, and S. V. Joshi, “Microstructure and performance of cold sprayed Al–SiC composite coatings with high fraction of particulates,” Surf. Coat. Technol. 318, 62–71 (2017).

    Article  CAS  Google Scholar 

  15. P. Rodrigo, M. Campo, B. Torres, M. D. Escalera, E. Otero, and J. Rams, “Microstructure and wear resistance of Al–SiC composites coatings on ZE41 magnesium alloy,” Appl. Surf. Sci. 255, 9174–9181 (2009).

    Article  CAS  Google Scholar 

  16. K. Spencer, D. M. Fabijanic, and M. X. Zhang, “The use of Al–Al2O3 cold spray coatings to improve the surface properties of magnesium alloys,” Surf. Coat. Technol. 204, 336–344 (2009).

    Article  CAS  Google Scholar 

  17. M. Campo, M. Carboneras, M. D. López, B. Torres, P. Rodrigo, E. Otero, and J. Rams, “Corrosion resistance of thermally sprayed Al and Al/SiC coatings on Mg,” Surf. Coat. Technol. 203, 3224–3230 (2009).

    Article  CAS  Google Scholar 

  18. B. Torres, M. Campo, M. Lieblich, and J. Rams, “Oxy-acetylene flame thermal sprayed coatings of aluminum matrix composites reinforced with MoSi2 intermetallic particles,” Surf. Coat. Technol. 236, 274–283 (2013).

    Article  CAS  Google Scholar 

  19. Y. Fu, X. Chen, B. Zhang, Y. Gong, H. Zhang, and H. Li, “Fabrication of nanodiamond reinforced aluminum composite coatings by flame spraying for marine applications,” Mater. Today Commun. 17, 46–52 (2018).

    Article  CAS  Google Scholar 

  20. D. Cong, Z. Li, Q. He, H. Chen, Z. Zhao, L. Zhang, and H. Wu, “Wear behavior of corroded Al–Al2O3 composite coatings prepared by cold spray,” Surf. Coat. Technol. 326, 247–254 (2017).

    Article  CAS  Google Scholar 

  21. M.A. Bradai, N. Bounar, A. Benabbas, and A. Ati, “Study of microstructure, phases and microhardness of metallic coatings deposited by flame thermal spray,” J. Mater. Process. Technol. 200, 410–415 (2008).

    Article  CAS  Google Scholar 

  22. V. Fervel, B. Normand, and C. Coddet, “Tribological behavior of plasma sprayed Al2O3-based cermet coatings,” Wear 230, 70–77 (1999).

    Article  CAS  Google Scholar 

  23. B. S. Schorr, K. J. Stein, and A. R. Marder, “Characterization of thermal spray coatings,” Mater. Charact. 42, 93–100 (1999).

    Article  CAS  Google Scholar 

  24. R. R. M. H. Pombo, R. S. C. Paredes, S. H. Wido, and A. Calixto, “Comparison of aluminum coatings deposited by flame spray and by electric arc spray,” Surf. Coat. Technol. 202, 172–179 (2007).

    Article  Google Scholar 

  25. R. Arrabal, A. Pardo, M. C. Merino, M. Mohedano, P. Casajús, and S. Merino, “Al/SiC thermal spray coatings for corrosion protection of Mg–Al alloys in humid and saline environments,” Surf. Coat. Technol. 204, 2767–2774 (2010).

    Article  CAS  Google Scholar 

  26. M. H. A. Malek, N. H. Saad, S. K. Abas, N. R. N. Roselina, and N. M. Shah, “Performance and microstructure analysis of 99.5% aluminum coating by thermal arc spray technique,” Procedia Eng. 68, 558–565 (2013).

    Article  Google Scholar 

  27. D.P. Schmidt, B. A. Shaw, E. Sikora, W. W. Shaw, and L. H. Laliberte, “Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment,” Prog. Org. Coat. 57, 352–364 (2006).

    Article  CAS  Google Scholar 

  28. M. M. Jalilvand, Y. Mazaheri, A. Heidarpour, and M. Roknian,” Development of A356/Al2O3 + SiO2 surface hybrid nanocomposite by friction stir processing,” Surf. Coat. Technol. 360, 121–132 (2019).

    Article  CAS  Google Scholar 

  29. G.E. Kiourtsidis, S. M. Skolianos, and E. G. Pavlidou, “A study on pitting behaviour of AA2024/SiC(p) composites using the double cycle polarization technique,” Corros. Sci. 41, 1185–1203 (1999).

    Article  CAS  Google Scholar 

  30. F. Gharavi, K. A. Matori, R. Yunus, N. K. Othman, and F. Fadaeifard, “Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process,” J. Mater. Res. Technol. 4, 314–322 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Bayat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salimi, N., Bayat, O. & Heidarpour, A. Investigation of TiO2 Addition on Tribological and Corrosion Behavior of Flame Sprayed Al Coating. Phys. Metals Metallogr. 121, 1431–1439 (2020). https://doi.org/10.1134/S0031918X20140148

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20140148

Keywords:

Navigation