Skip to main content
Log in

Characterizing Microstructure Evolution and Correlated Properties of an Al–Mg–Si Alloy during Nonisothermal Aging

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The microstructure evolution, mechanical properties and corrosion properties of Al–Mg–Si alloy during nonisothermal aging (NIA) were studied. The results show that as the aging time increases, the hardness, electric conductivity and the intergranular corrosion (IGC) resistance of the alloy increase, which relates to changes of microstructures. GP zones are primary formed in the initial heating stage. In the cooling stage, high-density, needle-like β" are main precipitates. The alloy through NIA treatment exhibits excellent mechanical properties and satisfactory corrosion resistance, resulting from the combination effects of the growth of original β" in the heating stage, the new formation of fine β" phase and the coarsening grain boundary precipitates during the cooling process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Pogatscher, H. Antrekowitsch, H. Leitner, T. Ebner, and P. J. Uggowitzer, “Mechanisms controlling the artificial aging of Al–Mg–Si Alloys,” Acta Mater. 59, 3352–3363 (2011).

    Article  CAS  Google Scholar 

  2. Y. Y. Zheng, B. H. Luo, He C, B. H. Zhen, Z. W. Ren, S. Wang, and Y. Yin, “Corrosion behaviour of the Al–2.1Mg–1.8Si alloy in chloride,” Bull. Mater. Sci. 42, 228–235 (2019).

    Article  Google Scholar 

  3. S. Souissi, H. Barhoumi, M. B. Amar, and F. Elhalouani, “Microstructure evolution and mechanical properties of the t6 heat treated AA6063 alloy produced by squeeze casting,” Phys. Met. Metallogr. 120, 806–812 (2019).

    Article  Google Scholar 

  4. J. Chen, L. Zhen, S. Yang, W. Shao, and S. Dai, “Investigation of precipitation behavior and related hardening in AA 7055 aluminum alloy,” Mater. Sci. Eng., A 500, 34–42 (2009).

    Article  Google Scholar 

  5. O. Engle, C. D. Marioara, Y. Aruga, M. Kozuka, and O. R. Myhr, “Effect of natural ageing or pre-ageing on the evolution of precipitate structure and strength during age hardening of Al–Mg–Si alloy,” Mater. Sci. Eng., A 759, 520–529 (2019).

    Article  Google Scholar 

  6. Y. V. Khlebnikova, T. R. Suaridze, D. P. Rodionov, L. Y. Egorova, I. V. Gervas’eva, and R. I. Gulyaeva, “Anticorrosion properties of textured substrates made of copper-based binary alloys,” Phys. Met. Metallogr. 118, 982–989 (2017).

    Article  CAS  Google Scholar 

  7. F. Fadaeifard, M. R. Pakmanesh, M. S. Esfahani, K. A. Matori, and D. Chicot, “Nanoindentation analysis of friction stir welded 6061-T6 Al alloy in as-weld and post weld heat treatment,” Phys. Met. Metallogr. 120, 483–491 (2019).

    Article  Google Scholar 

  8. X. Fan, Z. He, W. Zhou, and S. Yuan, “Formability and strengthening mechanism of solution treated Al–Mg–Si alloy sheet under hot stamping conditions,” J. Mater. Process. Technol. 228, 179–185 (2016).

    Article  CAS  Google Scholar 

  9. C. M. Abreu, M. J. Cristóbal, R. Figueroa, and G. Pena, “Wear and corrosion performance of two different tempers (T6 and T73) of AA7075 aluminium alloy after nitrogen implantation,” Appl. Surf. Sci. 327, 51–61 (2015).

    Article  CAS  Google Scholar 

  10. R. Li, T. Liu, R. Su, J. Su, and Y. Qu, “Study on corrosion behavior of 7075 aluminum alloy with retrogression and reaging using taguchi method,” J. Mater. Eng. Perform. 27, 6246–6255 (2018).

    Article  CAS  Google Scholar 

  11. R. M. Su, Y. D. Qu, R. D. Li, and J. H. You, “Study of the influence of the RRA thermal treatment and plasma nitriding on corrosion behavior of 7075-T6 aluminum alloy,” Surf. Coat. Technol. 374, 736–744 (2019).

    Article  Google Scholar 

  12. G. Özer and A. Karaaslan, “Relationship of RRA heat treatment with exfoliation corrosion, electrical conductivity and microstructure of AA7075 alloy,” Mater. Corros. 68, 1260–1267 (2017).

    Article  Google Scholar 

  13. A. Hayoune and S. G. Hamana, “Study on the structural evolution during non isothermal aging of an Al–Cu–Mg–Si alloy by means of thermal analysis,” Trans. Indian Inst. Met. 69, 1529–1535 (2016).

    Article  CAS  Google Scholar 

  14. Y. Jiang, J. H. Yu, J. Yin, M. Gao, Z. Wang, and X. Y. Zeng, “Nonisothermal ageing of an Al–8Zn–2Mg–2Cu alloy for enhanced properties,” J. Mater. Process. Technol. 227, 110–116 (2016).

    Article  CAS  Google Scholar 

  15. Z. Y. Pan, Z. Li, M. P. Wang, C. P. Deng, S. H. Li, and F. Zheng, “The effect of nonisothermal aging on the β phase of Cu73Al24Mn3 alloy,” Mater. Sci. Eng., A 467, 104–107 (2007).

    Article  Google Scholar 

  16. J.T. Staley and Durham, “Method and process of nonisothermal ageing for aluminum alloys,” U.S. Patent No. 0237113Al (2007).

  17. Y. Liu, S. Liang, and D. Jiang, “Influence of repetitious nonisothermal aging on microstructure and strength of Al–Zn–Mg–Cu alloy,” J. Alloys Compd. 689, 632–640 (2016).

    Article  CAS  Google Scholar 

  18. Y. Y. Zheng, B. H. Luo, Z. H. Bai, J. Wang and Y. Yin, “Study of the precipitation hardening behaviour and intergranular corrosion of Al–Mg–Si alloys with differing Si contents,” Metals 7, No. 387, 1–12 (2017).

    Article  Google Scholar 

  19. Q. Du, K. Tang, D. M. Calin, J. A. Sigmund, H. Bjørn, and H. Randi, “Modeling over-ageing in Al–Mg–Si alloys by a multi-phase CALPHAD-coupled Kampmann–Wagner numerical model,” Acta Mater. 122, 178–186 (2017).

    Article  CAS  Google Scholar 

  20. L. S. Bartell and D. T. Wu, “A new procedure for analyzing the nucleation kinetics of freezing in computer simulation,” J. Chem. Phys. 123, 194503 (2006).

    Article  Google Scholar 

  21. P. Hesam, R. J. Mohammad, and K. Gholamreza, “Constrained groove pressing and subsequent annealing of Al–Mn–Si alloy: Microstructure evolutions, crystallographic transformations, mechanical properties, electrical conductivity and corrosion resistance,” Corros. Sci. 124, 34–46 (2017).

    Google Scholar 

  22. T. Liu, Y. S. Yin, S. G. Chen, X. T Chang, and S. Cheng, “Super-hydrophobic surfaces improve corrosion resistance of copper in seawater,” Electrochim. Acta 52, 3709–3713 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y.Y., Luo, B.H., He, C. et al. Characterizing Microstructure Evolution and Correlated Properties of an Al–Mg–Si Alloy during Nonisothermal Aging. Phys. Metals Metallogr. 121, 1295–1300 (2020). https://doi.org/10.1134/S0031918X20130219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20130219

Keywords:

Navigation