Skip to main content
Log in

On tensor product decomposition of positive representations of \({\mathcal {U}}_{q\widetilde{q}}(\mathfrak {sl}(2,\mathbb {R}))\)

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study the tensor product decomposition of the split real quantum group \({\mathcal {U}}_{q\widetilde{q}}(\mathfrak {sl}(2,\mathbb {R}))\) from the perspective of finite-dimensional representation theory of compact quantum groups. It is known that the class of positive representations of \({\mathcal {U}}_{q\widetilde{q}}(\mathfrak {sl}(2,\mathbb {R}))\) is closed under taking tensor product. In this paper, we show that one can derive the corresponding Hilbert space decomposition, given explicitly by quantum dilogarithm transformations, from the Clebsch–Gordan coefficients of the tensor product decomposition of finite-dimensional representations of the compact quantum group \({\mathcal {U}}_q(\mathfrak {sl}_2)\) by solving certain functional equations arising from analytic continuation and using normalization arising from tensor products of canonical basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We used a different coproduct here but the transformation is equivalent up to multiplication by \(e^{2\pi i xy}\).

References

  1. Alex, A., Kalus, M., Huckleberry, A., von Delft, J.: A numerical algorithm for the explicit calculation of \(SU(N)\) and \(SL(N,\) Clebsch-Gordan coefficients. J. Math. Phys. 52, 023507 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bao, H., Wang, W.: Canonical bases in tensor products revisited. Am. J. Math. 138(6), 1731–38 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bytsko, A.G., Teschner, J.: R-operator, co-product and Haar-measure for the modular double of \({\cal{U}}_q((2,))\). Commun. Math. Phys. 240, 171–196 (2003)

    ADS  MATH  Google Scholar 

  4. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge Univ. Press, Cambridge (1994)

    MATH  Google Scholar 

  5. Chicherin, D., Derkachov, S.E., Spiridonov, V.P.: From principal series to finite-dimensional solutions of the Yang–Baxter equation. SIGMA 12, 028 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Faddeev, L.D., Kashaev, R.M.: Quantum dilogarithm. Mod. Phys. Lett. A 9, 427–434 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Faddeev, L.D.: Discrete Heisenberg–Weyl group and modular group. Lett. Math. Phys. 34, 249–254 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Faddeev, L.D.: Modular double of quantum group. arXiv:math/9912078v1 [math.QA] (1999)

  9. Fateev, V.A., Litvinov, A.V.: Correlation functions in conformal Toda field theory I. J. High Energy Phys. 11, 002 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Fock, V.V., Goncharov, A.B.: Moduli spaces of local systems and higher Teichmüller theory. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 103(1), 1–211 (2006)

    Article  MATH  Google Scholar 

  11. Fock, V.V., Goncharov, A.B.: The quantum dilogarithm and representations of the quantum cluster varieties. Invent. Math. 175, 223–286 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Frenkel, I., Ip, I.: Positive representations of split real quantum groups and future perspectives. Int. Math. Res. Not. 2014(8), 2126–2164 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Frenkel, I., Kim, H.: Quantum Teichmüller space from quantum plane. Duke Math. J. 161(2), 305–366 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Groza, V.A., Kachurik, I.I., Klimyk, A.U.: On Clebsch-Gordan coefficients and matrix elements of representations of the quantum algebra \({\cal{U}}_q(\mathfrak{su}_2)\). J. Math. Phys. 31, 2769 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Hong, J., Kang, S.-J.: Introduction to Quantum Groups and Crystal Bases. American Mathematical Soc. (2002)

  16. Ip, I.: Representation of the quantum plane, its quantum double and harmonic analysis on \(GL_q^+(2, R)\). Sel. Math. New Ser. 19(4), 987–1082 (2013)

    MATH  Google Scholar 

  17. Ip, I.: Positive representations of split real simply-laced quantum groups. Publ. RIMS 56(3), 603–646 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ip, I.: Positive representations of split real non-simply-laced quantum groups. J. Algebra 425(2015), 245–276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ip, I.: Positive representations of split real quantum groups: the universal \(R\) operator. Int. Math. Res. Not. 2015(1), 204–287 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Ip, I.: Positive representations, multiplier Hopf algebra, and continuous canonical basis. In: Proceedings of 2013 RIMS Conference “String Theory, Integrable Systems and Representation Theory”, Kôkyûroku Bessatsu, vol. B62 (2017)

  21. Ip, I.: On tensor product of positive representations of split real quantum Borel algebra \({\cal{U}}_{q{\tilde{t}}}({\mathfrak{b}}_\mathbb{R})\). Trans. Am. Math. Soc. 370(6), 4177–4200 (2018)

    Google Scholar 

  22. Ip, I.: Positive Casimir and central characters of split real quantum groups. Commun. Math. Phys. 344(3), 857–888 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ip, I.: Cluster realization of \({\cal{U}}_q({\mathfrak{g}})\) and factorization of universal \({\cal{R}}\) matrix. Sel. Math. New Ser. 24(5), 4461–4553 (2018)

    MATH  Google Scholar 

  24. Ip, I.: Cluster realization of positive representations of split real quantum Borel subalgebra Theo. Math. Phys. 198(2), 246–272 (2019)

    MathSciNet  Google Scholar 

  25. Ip, I.: Parabolic positive representations of \({\cal{U}}_q({\mathfrak{g}_R})\). arXiv:2008.08589 (2020)

  26. Jantzen, J.: Lectures on Quantum Groups, Graduate Studies in Mathematics, vol. 6. American Mathematical Society (1996)

  27. Kashaev, R.M.: The quantum dilogarithm and Dehn twist in quantum Teichmüller theory, Integrable Structures of Exactly Solvable Two-Dimensional Models of Quantum Field Theory (Kiev, Ukraine, September 25–30, 2000). NATO Sci. Ser. II Math. Phys. Chem., vol. 35. Kluwer, Dordrecht, pp. 211–221 (2001)

  28. Kashiwara, M.: Crystalizing the \(q\)-analogue of universal enveloping algebras. Commun. Math. Phys. 133, 249–260 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Springer (2012)

  30. Lusztig, G.: Canonical bases arising from quantized enveloping algebras. J. AMS 3(2), 447–498 (1990)

    MathSciNet  MATH  Google Scholar 

  31. Lusztig, G.: Canonical bases in tensor products. Proc. Natl. Acad. Sci. USA 89, 8177–8179 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Ma, Z.Q.: Yang–Baxter Equation and Quantum Enveloping Algebras, Advanced Series on Theoretical Physical Science, vol. 1. World Scientific (1993)

  33. Nidaiev, I., Teschner, J.: On the relation between the modular double of \({\cal{U}}_q(\mathfrak{sl} (2,\mathbb{R}))\) and the quantum Teichmüller theory. arXiv:1302.3454 (2013)

  34. Ponsot, B., Teschner, J.: Liouville bootstrap via harmonic analysis on a noncompact quantum group. arXiv: hep-th/9911110. (1999)

  35. Ponsot, B., Teschner, J.: Clebsch–Gordan and Racah–Wigner coefficients for a continuous series of representations of \({\cal{U}}_q(\mathfrak{sl}(2,\mathbb{R}))\). Commun. Math. Phys 224, 613–655 (2001)

    ADS  MATH  Google Scholar 

  36. Reshetikhin, N., Turaev, V.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys. 127(1), 1–26 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Reshetikhin, N., Turaev, V.: Invariants of 3-manifolds via link polynomials and quantum groups. Invent. Math. 103(1), 547 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Schrader, G., Shapiro, A.: A cluster realization of \({\cal{U}}_q(\mathfrak{sl}_n)\) from quantum character varieties. Invent. Math. 216(3), 799–846 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Schrader, G., Shapiro, A.: Continuous tensor categories from quantum groups I: algebraic aspects. arXiv:1708.08107 (2017)

  40. Schrader, G., Shapiro, A.: On \(b\)-Whittaker functions. arXiv:1806.00747 (2018)

  41. Volkov, AYu.: Noncommutative hypergeometry. Commun. Math. Phys. 258(2), 257–273 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Wyllard, N.: \(A_{N-1}\) conformal Toda field theory correlation functions from conformal \({\cal{N}}= 2\)\(SU(N)\) quiver gauge theories. J. High Energy Phys. 11, 002 (2009)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is supported by the Hong Kong RGC General Research Funds ECS #26303319.

Funding

The author is supported by the Hong Kong RGC General Research Funds ECS #26303319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan C. H. Ip.

Ethics declarations

Conflict of interest

Not applicable.

Availability of data and material

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ip, I.C.H. On tensor product decomposition of positive representations of \({\mathcal {U}}_{q\widetilde{q}}(\mathfrak {sl}(2,\mathbb {R}))\). Lett Math Phys 111, 39 (2021). https://doi.org/10.1007/s11005-021-01381-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11005-021-01381-6

Keywords

Mathematics Subject Classification

Navigation