Skip to main content
Log in

Decentralized Optimization Over Tree Graphs

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper presents a decentralized algorithm for non-convex optimization over tree-structured networks. We assume that each node of this network can solve small-scale optimization problems and communicate approximate value functions with its neighbors based on a novel multi-sweep communication protocol. In contrast to existing parallelizable optimization algorithms for non-convex optimization, the nodes of the network are neither synchronized nor assign any central entity. None of the nodes needs to know the whole topology of the network, but all nodes know that the network is tree-structured. We discuss conditions under which locally quadratic convergence rates can be achieved. The method is illustrated by running the decentralized asynchronous multi-sweep protocol on a radial AC power network case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The assumption \(|{\mathcal {N}}| > 1\) ensures that \(\pi _i\) exists and is well-defined for all \(i \in {\mathcal {L}}^\bullet \).

References

  1. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)

    Article  Google Scholar 

  2. Bernardini, D., Bemporad, A.: Stabilizing model predictive control of stochastic constrained linear systems. IEEE Trans. Autom. Control 57(6), 1468–1480 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bertsekas, D.: Convexification procedures and decomposition methods for nonconvex optimization problems. J. Optim. Theory Appl. 29(2), 169–197 (1979)

    Article  MathSciNet  Google Scholar 

  4. Bertsekas, D.P.: Dynamic programming and suboptimal control: A survey from ADP to MPC. Eur. J. Control 11(4–5), 310–334 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena Scientific Belmont, MA (2007)

    MATH  Google Scholar 

  6. Bertsekas, D.P.: Abstract Dynamic Programming. Athena Scientific Belmont, MA (2013)

    MATH  Google Scholar 

  7. Bertsekas, D.: Constrained Optimization and Lagrange Multiplier Methods. Academic Press, Singapore (2014)

    MATH  Google Scholar 

  8. Bertsekas, D., Tsitsiklis, J.: Parallel and Distributed Computation: Numerical Methods, vol. 23. Prentice Hall Englewood Cliffs, NJ (1989)

    MATH  Google Scholar 

  9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

  10. Braun, P., Grüne, L., Kellett, C.M., Weller, S.R., Worthmann, K.: A distributed optimization algorithm for the predictive control of smart grids. IEEE Trans. Autom. Control 61(12), 3898–3911 (2016)

    Article  MathSciNet  Google Scholar 

  11. Du, X., Engelmann, A., Jiang, Y., Faulwasser, T., Houska, B.: Distributed state estimation for AC power systems using Gauss-Newton ALADIN. In: In Proceedings of the 58th IEEE Conference on Decision and Control, pp. 1919–1924 (2019)

  12. Engelmann, A., Jiang, Y., Mühlpfordt, T., Houska, B., Faulwasser, T.: Toward distributed OPF using ALADIN. IEEE Trans. Power Syst. 34(1), 584–594 (2018)

    Article  Google Scholar 

  13. Gondzio, J., Grothey, A.: Exploiting structure in parallel implementation of interior point methods for optimization. CMS 6(2), 135–160 (2009)

  14. Grüne, L., Semmler, W.: Using dynamic programming with adaptive grid scheme for optimal control problems in economics. J. Econ. Dyn. Control 28, 2427–2456 (2004)

  15. Hamdi, A.: Two-level primal-dual proximal decomposition technique to solve large scale optimization problems. Appl. Math. Comput. 160(3), 921–938 (2005)

  16. Hamdi, A., Mishra, S.K.: Decomposition methods based on augmented Lagrangians: a survey. In: Mishra, S. (ed.) Topics in nonconvex optimization, pp. 175–203. Springer (2011)

  17. Hong, M., Luo, Z.Q., Razaviyayn, M.: Convergence analysis of alternating direction method of multipliers for a family of nonconvex problems. SIAM J. Optim. 26(1), 337–364 (2016)

    Article  MathSciNet  Google Scholar 

  18. Houska, B., Diehl, M.: Nonlinear robust optimization via sequential convex bilevel programming. Math. Program., Ser. A 142, 539577 (2013)

  19. Houska, B., Frasch, J., Diehl, M.: An augmented Lagrangian based algorithm for distributed nonconvex optimization. SIAM J. Optim. 26(2), 11011127 (2016)

    Article  MathSciNet  Google Scholar 

  20. Hult, R., Zanon,M.,Gros, S., Falcone, P.: Primal decomposition of the optimal coordination of vehicles at traffic intersections. In: 2016 IEEE 55thConference on Decision and Control (CDC), pp. 2567–2573

  21. Jiang, Y., Zanon, M., Hult, R., Houska, B.: Distributed algorithm for optimal vehicle coordination at traffic intersections. IFAC-PapersOnLine 50(1), 11577–11582 (2017)

    Article  Google Scholar 

  22. Kekatos, V., Giannakis, G.B.: Distributed robust power system state estimation. IEEE Trans. Power Syst. 28(2), 1617–1626 (2012)

  23. Kellerer, A., Steinke, F.: An approximate min-sum algorithm for smart grid dispatch with continuous variables. IFAC-PapersOnLine 49, 307–312 (2016)

    Article  Google Scholar 

  24. Kellerer, A., Steinke, F.: Scalable economic dispatch for smart distribution networks. IEEE Trans. Power Syst. 30, 1739–1746 (2014)

    Article  Google Scholar 

  25. Keshavarz, A., Boyd, S.: Quadratic approximate dynamic programming for input-affine systems. Int. J. Robust Nonlinear Control 24(3), 432–449 (2014)

    Article  MathSciNet  Google Scholar 

  26. Khoshfetrat Pakazad, S., Hansson, A., Andersen, M.S., Nielsen, I.: Distributed primal-dual interior-point methods for solving tree-structured coupled convex problems using message-passing. Optim. Methods Softw. 32(3), 401–435 (2017)

  27. Kouzoupis, D., Klintberg, E., Diehl, M., Gros, S.: A dual Newton strategy for scenario decomposition in robust multistage MPC. Int. J. Robust Nonlinear Control 28(6), 2340–2355 (2018)

    Article  MathSciNet  Google Scholar 

  28. Kouzoupis, D., Quirynen, R., Garcia, J., Erhard, M., Diehl, M.: A quadratically convergent primal decomposition algorithm with soft coupling for nonlinear parameter estimation. In: 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 1086–1092 (2016)

  29. Kouzoupis,D.: Structure-exploiting numericalmethods for tree-sparse optimal control problems. Ph.D. thesis, University of Freiburg (2019)

  30. Lucia, S., Andersson, J.A., Brandt, H., Diehl, M., Engell, S.: Handling uncertainty in economic nonlinear model predictive control: A comparative case study. J. Process Control 24(8), 1247–1259 (2014)

  31. Luss, R.: Optimal control by dynamic programming using systematic reduction in grid size. Int. J. Control 51(5), 995–1013 (1990)

    Article  MathSciNet  Google Scholar 

  32. Makhdoumi, A., Ozdaglar, A.: Convergence rate of distributed ADMM over networks. IEEE Trans. Autom. Control 62(10), 5082–5095 (2017)

    Article  MathSciNet  Google Scholar 

  33. Molzahn, D.K., Dörfler, F., Sandberg, H., Low, S.H., Chakrabarti, S., Baldick, R., Lavaei, J.: A survey of distributed optimization and control algorithms for electric power systems. IEEE Trans. Smart Grid 8(6), 2941–2962 (2017)

    Article  Google Scholar 

  34. Nedić, A., Olshevsky, A., Shi, W.: Decentralized consensus optimization and resource allocation. In: Large-Scale and Distributed Optimization, pp. 247–287. Springer (2018)

  35. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, vol. 87. Springer, Berlin (2013)

    MATH  Google Scholar 

  36. Nesterov, Y., Polyak, B.T.: Cubic regularization of Newton method and its global performance. Math. Program. 108(1), 177–205 (2006)

    Article  MathSciNet  Google Scholar 

  37. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  38. Pakazad, S., Hansson, A., Andersen, M.: Distributed primal-dual interior-point methods for solving tree-structured coupled problems using message passing. Optim. Methods Softw. 32(3), 401–435 (2017)

    Article  MathSciNet  Google Scholar 

  39. Peng, Q., Low, S.: Distributed algorithm for optimal power flow on a radial network. In: 53rd IEEE Conference on Decision and Control, pp. 167–172. IEEE (2014)

  40. Rawlings, J., Mayne, D., Diehl, M.: Model Predictive Control: Theory and Design, 2nd edn. Nob Hill Publishing, Madison, WI (2017)

    Google Scholar 

  41. Robinson, S.: Strongly regular generalized equations. Math. Oper. Res. 5(1), 43–62 (1980)

    Article  MathSciNet  Google Scholar 

  42. Shi, W., Ling, Q., Yuan, K., Wu, G., Yin, W.: On the linear convergence of the ADMM in decentralized consensus optimization. IEEE Trans. Signal Process. 62(7), 1750–1761 (2014)

    Article  MathSciNet  Google Scholar 

  43. Terelius, H., Topcu, U., Murray, R.M.: Decentralized multi-agent optimization via dual decomposition. IFAC Proc. 44(1), 11245–11251 (2011)

    Article  Google Scholar 

  44. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  45. Wang, Y., O’Donoghue, B., Boyd, S.: Approximate dynamic programming via iterated Bellman inequalities. Int. J. Robust Nonlinear Control 25(10), 1472–1496 (2015)

    Article  MathSciNet  Google Scholar 

  46. Zavala, V., Laird, C., Biegler, L.: Interior-point decomposition approaches for parallel solution of large-scale nonlinear parameter estimation problems. Chem. Eng. Sci. 63(19), 4834–4845 (2008)

    Article  Google Scholar 

  47. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

YJ, HY, and BH acknowledge support by ShanghaiTech University, Grant-Nr. F-0203-14-012. DK and MD acknowledge support by BMWi via eco4wind (0324125B) and DyConPV (0324166B), and by DFG via Research Unit FOR 2401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Houska.

Additional information

Communicated by Levent Tunçel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Proof of Theorem 1.1

Appendix A Proof of Theorem 1.1

Let us introduce the shorthands

$$\begin{aligned} z^{k+1} = \left( \begin{array}{c} z_1^{k+1} \\ z_2^{k+1} \end{array} \right) = \left( \begin{array}{c} x^{k+1} \\ \kappa ^{k+1} \end{array} \right) \qquad \text {and} \qquad z^\star = \left( \begin{array}{c} x^\star \\ \kappa ^\star \end{array} \right) \end{aligned}$$

to denote, respectively, the primal dual minimizer of (6) at the kth iteration of the algorithm and the primal-dual minimizer of (5). Due to the regularity of \(x^\star \), the LICQ condition must be satisfied in a neighborhood of \(x^\star \), which implies that the first order necessary KKT conditions

$$\begin{aligned} R(x^k,z^{k+1}) = 0 \qquad \text {and} \qquad R(x^\star ,z^\star ) = \widetilde{R}(z^\star ) = 0 \end{aligned}$$
(24)

with shorthands

$$\begin{aligned} R( \xi , \zeta )= & {} \nabla _z \left[ \varPhi (\xi ,\zeta _1) + \zeta _2^\top C(\zeta _1) \right] \qquad \text {and} \\ \widetilde{R}(\zeta )= & {} R(\zeta _1,\zeta ) = \nabla _z \left[ F(\zeta _1) + \zeta _2^\top C(\zeta _1) \right] \end{aligned}$$

are satisfied recalling that \(\varPhi \) is a locally accurate approximation of F. Now, because the derivative of R with respect to its second argument, \(\nabla _z R(x,\cdot )\), is uniformly Lipschitz continuous function in a neighborhood of \(z^\star \), the first equation in (24) yields

$$\begin{aligned} 0= & {} R(x^k,z^{k+1}) = R ( x^k, z^k ) + \int _{0}^1 \nabla _z R(x^k, z^k + s (z^{k+1}-z^k) ) (z^{k+1}-z^k) \, \mathrm {d}s \nonumber \\\end{aligned}$$
(25)
$$\begin{aligned}= & {} \widetilde{R} ( z^k ) + M(z_k) (z^{k+1}-z^k) + \mathbf {O}\left( \Vert z^{k+1}-z^k \Vert ^2 \right) \; , \end{aligned}$$
(26)

where we have set \(M(z^k) = \nabla _z R(x^k, z^k) = \nabla _z \widetilde{R}(z^k)\) and used that \(\widetilde{R}(z^k) = R(x^k,z^k)\). Notice that the KKT matrix \(M(z_k)\) is invertible for all \(z^k\) in an open neighborhood of \(z^\star \) as we assume that the LICQ and SOSC condition are satisfied at \(z^\star \). Consequently, because we have \(\widetilde{R}(z^k) = \mathbf {O}( \Vert z^k - z^\star \Vert )\), the above equation implies that

$$\begin{aligned} z^{k+1} = z^k - M(z^k)^{-1} \widetilde{R}(z^k) + \mathbf {O}( \Vert z^k - z^\star \Vert ^2 ) \; . \end{aligned}$$
(27)

From here on, the proof is very similar to the standard proof of quadratic convergence of Newton’s method (see, e.g., [37, Thm. 3.5]); that is we use (27) to establish the inequality

$$\begin{aligned} \Vert z^{k+1} - z^\star \Vert= & {} \left\| z^k - z^\star - M(z^k)^{-1} \widetilde{R}(z^k) \right\| + \mathbf {O}( \Vert z^k - z^\star \Vert ^2 ) \nonumber \\= & {} \left\| z^k - z^\star - M(z^k)^{-1} \left( \widetilde{R}(z^k) - \widetilde{R}(z^\star ) \right) \right\| + \mathbf {O}( \Vert z^k - z^\star \Vert ^2 ) \nonumber \\= & {} \left\| \left( I - M(z^k)^{-1} \int _0^{1} \nabla _z \widetilde{R}(z^k+s(z^k-z^\star )) \, \mathrm {d}s \right) (z^k-z^\star ) \right\| \nonumber \\&+ \mathbf {O}( \Vert z^k - z^\star \Vert ^2 ) \nonumber \\= & {} \underbrace{\left\| I - M(z^k)^{-1} \nabla _z \widetilde{R}(z^k) \right\| }_{=0} \Vert z^k - z^\star \Vert + \mathbf {O}( \Vert z^k - z^\star \Vert ^2 ) \; . \end{aligned}$$
(28)

Because the LICQ condition holds the iterates of the multiplier sequence \(\kappa ^k\) is uniquely determined by the sequence \(x^k\) (since \(x^{k+1}\) depends only on \(x^k\), but not on \(\kappa ^k\)), the above equation also implies that

$$\begin{aligned} \Vert x^{k+1} - x^\star \Vert = \mathbf {O}( \Vert x^k - x^\star \Vert ^2 ) \; . \end{aligned}$$

The latter equation corresponds to the statement of the theorem establishing local quadratic convergence.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Kouzoupis, D., Yin, H. et al. Decentralized Optimization Over Tree Graphs. J Optim Theory Appl 189, 384–407 (2021). https://doi.org/10.1007/s10957-021-01828-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-021-01828-9

Keywords

Navigation