Skip to main content
Log in

Control of Heat Treatment of Case-Hardening Steel 18CrNiMo7-6 by Determining the Penetration Depth of Eddy Currents

  • Published:
Metal Science and Heat Treatment Aims and scope

The relative magnetic permeability and electric conductivity in the temperature range from room one to 800°C are determined for steel 18CrNiMo7-6 with different structures, i.e., martensitic, bainitic and ferritic-pearlitic ones. The variation of the magnetic properties of the steel as a function of the temperature and of the microstructure and their effect of the depth of penetration of eddy currents are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. O. Bruchwald, W. Frackowiak, W. Reimche, and H. J. Maier, “Non-destructive in situ monitoring of the microstructural development in high performance steel components during heat treatment,” La Metall. Italiana, No. 11/12, 29 – 37 (2015).

  2. C. Zhang, N. Bowler, and C. Lo, “Magnetic characterization of surface-hardened steel,” J. Magn. Magn. Mater., 321(23), 3878 – 3887 (2009).

    Article  CAS  Google Scholar 

  3. J. Cuffee, H. Sun, and Yu. Plotnikov, “Eddy current measurement of casehardened depth of steel components,” in: 17th World Conf. on Nondestructive Testing, 25 – 28 Oct. 2008, Shanghai, China; URL https://www.ndt.net/article/wcndt2008/papers/383.pdf.

  4. M. Blaow, J. Evans, and B. Shaw, “Effect of hardness and composition gradients on barkhausen emission in case hardened steel.” J. Magn. Magn. Mater., 303(1), 153 – 159 (2006).

    Article  CAS  Google Scholar 

  5. S. Kobayashi, H. Takahashi, and Y. Kamada, “Evaluation of case depth induction-hardened steels: Martensitic hysteresis measurements and hardness depth profiling by differential permeability analysis,” J. Magn. Magn. Mater., 343, 112 – 118 (2013).

    Article  CAS  Google Scholar 

  6. Y. Kai, Y. Tsuchida, and M. Enokizono, “Magnetic evaluation of hardening effect of carbon steel,” J. Optoelectron. Adv. Mater., 10, 1078 – 1084 (2008).

    CAS  Google Scholar 

  7. B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, 2nd Ed., IEEE Press and Wiley, Piscataway, NJ and Hoboken, NJ (2009).

    Google Scholar 

  8. Y. Tian, “Electrical conductivity and magnetic permeability measurement of case hardened steels,” AIP Conf. Proc., 1650(462), 462 – 469 (2015).

    Article  CAS  Google Scholar 

  9. X. Hao, W. Yin, M. Strangwood, et al., “Modelling the electromagnetic response of two-phase steel microstructures,” NDT & E Int., 43(4), 305 – 315 (2010).

    Article  CAS  Google Scholar 

  10. G. V. Bida, A. P. Nichipuruk, and T. P. Tsar’kova, “Magnetic properties of steels after quenching and tempering. I. General. Carbon steels,” Russian J. Nondestr. Testing, 37(2), 79 – 99 (2001).

    Article  CAS  Google Scholar 

  11. A. Boehm and I. Hahn, “Measurement of magnetic properties of steel at high temperatures,” in: IEEE Xplore (2014), pp. 715 – 721.

  12. L. J. Van der Pauw, “A method of measuring the resistivity and hall coefficient on lamellae of arbitrary shape,” Philips Tech. Rev., 20, 220 – 224 (2958).

  13. K. A. Borup, E. S. Toberer, L. D. Zoltan, et al., “Measurement of the electrical resistivity and hall coefficient at high temperatures,” Rev. Sci. Instr., 83(123902), art. 123902-1-7 (2012).

  14. C. Wood, A. Lockwodd, A. Chmielewski, et al., “High-temperature hall-effect apparatus,” Rev. Sci. Instr., 55(110), 110 – 113 (1983).

    Google Scholar 

  15. S. Hadi, A. Y. Indrawan, A. Kurniawan, and S. Suyinto, “Feasibility study of high-temperature resistivity measurement apparatus with four-point probe method: Designing, manufacturing, and validating process,” AIP Conf. Proc., 1788(030135), art. 030135-1-7 (2017).

  16. C. Kasl and M. J. R. Hoch, “Effects of sample thickness on the van der Pauw technique for resistivity measurements,” Rev. Sci. Instr., 76(033907), art. 033907-1-4 (2005).

  17. DIN EN ISO 127128. Non-Destructive Testing Vocabulary (2018) (ISO/DIS12718:2018).

  18. A. Mitra, M. R. Govindaraju, and D. C. Jiles, “Influence of microstructure on micromagnetic barkhausen emission in AISI 4140 steel,” IEEE Trans. Magn., 31(6), 4053 – 4055 (1995).

    Article  CAS  Google Scholar 

  19. D. C. Jiles, “The effect of compressive plastic deformation on the magnetic properties of AISI 4130 steels with various microstructures,” J. Phys. D: Appl. Phys., 21(7), 1196 – 1204 (1988).

    Article  CAS  Google Scholar 

  20. G. Vertesy, T. Uchimoto, T. Takagi, et al., “Nondestructive characterization of flake graphite cast iron by magnetic adaptive testing,” NDT & E Int., 74, 8 – 14 (2015).

    Article  Google Scholar 

  21. D. C. Jiles, “Magnetic properties and microstructure of AISI 1000 series carbon steels,” J. Phys. D: Appl. Phys., 21(7), 1186 – 1195 (1988).

    Article  CAS  Google Scholar 

  22. V. N. Kisin, V. A. Kovrigin, and N. A. Kulikova, “Magnetic properties and electrical conductivity of 58 (55PP) and 47GT and 47GT steels after hardening and tempering,” Metal Sci. Heat Treat., 26(7), 498 – 492 (1984).

    Article  Google Scholar 

  23. L. J. Dijkstra and C. Wert, “Effect of inclusions on coercive force of iron,” Phys. Rev., 79(6), 979 – 985 (1950).

    Article  CAS  Google Scholar 

  24. S. Chikazumi, Physics of Ferromagnetism, Oxford Science Publications, Oxford University Press, Oxford (1997).

    Google Scholar 

  25. C. Radhakrishnamurty and S. Likhite, “Hopkinson effect, blocking temperature and curie point in basalt,” Earth Planet. Sci. Lett., 7(5), 389 – 396 (1970).

    Article  CAS  Google Scholar 

  26. M. Morishita, N. Takahashi, D. Miyagi, and M. Nakano, “Examination of magnetic properties of several magnetic materials at high temperature,” Przeglad Elektrotechniczny, 87, 106 – 110 (2011).

    Google Scholar 

  27. S. S. M. Tavares, D. Fruchart, S. Miraglia, and D. Laborie, “Magnetic properties of an AISI 420 martensitic stainless steel,” J. Alloys Compd., 312, 307 – 314 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 11, pp. 60 – 67, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fricke, L.V., Barton, S., Maier, H.J. et al. Control of Heat Treatment of Case-Hardening Steel 18CrNiMo7-6 by Determining the Penetration Depth of Eddy Currents. Met Sci Heat Treat 62, 716–722 (2021). https://doi.org/10.1007/s11041-021-00627-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00627-3

Key words

Navigation