Skip to main content
Log in

Evolution of Microstructure in the Thermomechanically Affected Zone of Welded Joints of Medium-Carbon Steels in the Process of Rotary Friction Welding

  • WELDED JOINTS
  • Published:
Metal Science and Heat Treatment Aims and scope

The methods of transmission and scanning electron microscopy are used to study the evolution of the structure of a welded joint of steels 32G2 and 40KhN in the thermomechanically affected zone (TAZ) under rotary friction welding (RFW). EBSD analysis is used to certify the microstructure in different parts of the TAZ and to calculate the densities of the low- and high-angle boundaries. It is shown that complex processes of dynamic recrystallization combining several mechanisms develop in all these regions of the TAZ. Typical differences in the structures of the mobile (steel 40KhN) and immobile (steel 32G2) parts of the billets are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. Nisarg Shete and S. U. Deokar, “A review paper on rotary friction welding,” Int. Conf. Ideas, Impact and Innovation in Mechan. Eng., 5(6), 1557 – 1560 (2017).

    Google Scholar 

  2. Ramesh Aswin Pranav, Subramaniyan Madheswaran, and Eswaran Prakash, “Review on friction welding of similar/dissimilar metals,” J. Phys., Conf. Ser., 1362 (2019) (doi: https://doi.org/10.1088/1742-6596/1362/1/012032).

  3. F. C. Liu and T. W. Nelson, “Grain structure evolution, grain boundary sliding and material flow resistance in friction welding of alloy 718,” Mater. Sci. Eng. A, 710, 280 – 288 (2018).

    Article  CAS  Google Scholar 

  4. R. Damodaram, Sundara Raman S. Ganesh, and Rao K. Prasad, “Effect of post-weld heat treatments on microstructure and mechanical properties of friction welded alloy 781 joints,” Mater. Design, 53, 954 – 961 (2014).

    Article  CAS  Google Scholar 

  5. Markus Slutz, Ricardo Buzolin, Florian Pixner, et al., “Microstructure development of molybdenum during rotary friction welding,” Mater. Charact., 151, 506 – 518 (2019).

    Article  Google Scholar 

  6. Guilong Wang, Junglong Li, Weilang Wang, et al., “Study on the effect of energy-input on the joint mechanical properties of rotary friction-welding,” Metals, 8(11) (2018) (doi: https://doi.org/10.3390/met8110908).

  7. E. Yu. Priymak, A. S. Atamashkin, E. A. Kuz’mina, and E. S. Tulibaev, “Application of rotary friction welding in manufacturing of geologic exploration drill tubes: industrial experience and research,” Chern. Met., No. 4, 37 – 42 (2020).

    Google Scholar 

  8. V. I. Vil, Friction Welding of Metals [in Russian], Mashinostroenie, Moscow (1970), 176 p.

    Google Scholar 

  9. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Oxford (1996), 497 p.

  10. T. Sakai, A. Belyakov, R. Kaibyshev, et al., “Dynamic and post dynamic recrystallization under hot, cold and severe plastic deformation,” Progr. Mater. Sci., 60(1), 130 – 207 (2014).

    Article  CAS  Google Scholar 

  11. A. Belyakov, N. Dudova, M. Tikhonova, et al., “Dynamic recrystallization mechanisms operating under different processing conditions,” Mater. Sci. Forum, 706 – 709, 2704 – 2709 (2012).

  12. S. Gourdet and F. Montheillet, “A model of continuous dynamic recrystallization,” Acta Mater., 51, 2685 – 2699 (2003).

    Article  CAS  Google Scholar 

  13. A. Salandari-Robori, A. Zarei-Hanzaki, H. R. Abdeli, et al., “Micro and macro texture evolution during multiaxial forging of a WE43 magnesium alloy,” J. Alloys Compd., 739, 249 – 259 (2018).

    Article  Google Scholar 

  14. E. S. Gorkunov, S.M. Zadvorkin, S. M. Goruleva, et al., “Structure and mechanical properties of high-carbon steel subjected to severe deformation impact,” Fiz. Met. Metalloved., 118(10), 1055 – 1064 (2017).

    Google Scholar 

  15. M. G. Jiang, C. Xu, H. Yan, et al., “Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion,” Acta Mater., 157, 53 – 71 (2018).

    Article  CAS  Google Scholar 

  16. M. Tikhonova, A. Belyakov, and R. Kaibyshev, “Strain-induced grain evolution in an austenitic stainless steel under warm multiple forging,” Mater. Sci. Eng. A, 564, 413 – 422 (2013).

    Article  CAS  Google Scholar 

  17. S. S. Gorelik, M. L. Bernshtein, S. V. Dobatkin, and L. M. Kaputkina, Recrystallization of Metals and Alloys [in Russian], MISiS, Moscow (2005), 432 p.

    Google Scholar 

  18. E. Y. Priymak, I. L. Yakovleva, N. A. Tereshchenko, et al., “Evolution of the structure and mechanisms of the formation of welded joints of medium-carbon steels upon rotary friction welding,” Phys. Met. Metallogr., 120(11), 1091 – 1096 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Priymak.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 12, pp. 9 – 16, December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priymak, E.Y., Yakovlev, I.L., Atamashkin, A.S. et al. Evolution of Microstructure in the Thermomechanically Affected Zone of Welded Joints of Medium-Carbon Steels in the Process of Rotary Friction Welding. Met Sci Heat Treat 62, 731–737 (2021). https://doi.org/10.1007/s11041-021-00630-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-021-00630-8

Key words

Navigation