Skip to main content
Log in

Entropy-Randomized Projection

  • OPTIMIZATION, SYSTEM ANALYSIS, OPERATIONS RESEARCH
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

We propose a new randomized projection method based on entropy optimization of random projection matrices (the ERP method). The concept of compactness indicator of a data matrix, which is stored in projection matrices, is introduced. An ERP algorithm is formulated in the form of a conditional maximization problem for an entropy functional defined on the probability density functions of the projection matrices. A discrete version of this problem is considered, and conditions are obtained for the existence and uniqueness of its positive solution. Procedures are developed for the implementation of entropy-optimal projection matrices by sampling the probability density functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Other indicators, e.g., the maximum distance between the points, etc., can also be selected.

REFERENCES

  1. Carreira-Perpinán, M.A., A review of dimension reduction techniques, in Tech. Rep. CS-96-09 , Dep. Comput. Sci., Univ. Sheffield, 1997.

  2. Imola, K., A survey of dimension reduction techniques, Cent. Appl. Sci. Comput, Lawrence Livermore Natl. Lab., 2002.

  3. Cunningham, P., Dimension reduction, in Tech. Rep. UCD-CSI-2007-7 , Univ. Coll. Dublin, 2007.

  4. Aivazyan, S.A., Bukhshtaber, V.M., Enyukov, I.S., and Meshalkin, L.D., Prikladnaya statistika. Klassifikatsiya i snizhenie razmernosti (Applied Statistics. Classification and Dimension Reduction), Moscow: Finansy Stat., 1989.

    MATH  Google Scholar 

  5. Friedman, J., Hastie, T., and Tibshirani, R., The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Berlin: Springer, 2001.

    MATH  Google Scholar 

  6. Bishop, C., Pattern Recognition and Machine Learning, Ser. Inf. Sci. Stat., Berlin: Springer, 2006.

    Google Scholar 

  7. Comon, P. and Jutten, C., Handbook of Blind Source Separation. Independent Component Analysis and Applications, Oxford UK: Academic Press, 2010.

    Google Scholar 

  8. Bruckstein, A.M., Donoho, D.L., and Elad, M., From sparse solutions of systems of equations to sparse modeling of signals and images, SIAM Rev., 2009, vol. 51, no. 1, pp. 34–81.

    Article  MathSciNet  Google Scholar 

  9. Pirson, K., On lines and planes of closest fit to systems of points in space, Philos. Mag., 1901, vol. 2, pp. 559–572.

    Article  Google Scholar 

  10. Kendall, M.G. and Stuart, A., The Advanced Theory of Statistics. Vol. 2. Inference and Relationship, London: Charles Griffin & Co., 1967. Translated under the title: Statisticheskie vyvody i svyazi, Moscow: Nauka, 1973.

    MATH  Google Scholar 

  11. Jolliffe, I.T., Principal Component Analysis, New York: Springer-Verlag, 2002.

    MATH  Google Scholar 

  12. Polyak, B.T. and Khlebnikov, M.V., Principle component analysis: robust versions, Autom. Remote Control, 2017, vol. 78, pp. 490–506. https://doi.org/10.1134/S0005117917030092

    Article  MathSciNet  MATH  Google Scholar 

  13. Deerwester, S.C., Dumias, S.T., Landaurer, T.K., Furnas, G.W., and Harshman, R.A., Indexing by latent semantic analysis, J. Am. Soc. Inf. Sci., 1990, vol. 41, no. 6, pp. 391–407.

    Article  Google Scholar 

  14. Fisher, R.A., The use of multiple measurements in taxonomic problems, Ann. Eugen., 1936, vol. 7, pp. 179–188.

    Article  Google Scholar 

  15. McLachlan, G.J., Discriminant Analysis and Statistical Pattern Recognition, New York: Wiley Interscience, 2004.

    MATH  Google Scholar 

  16. Johnson, W.B. and Lindenstrauss, J., Extension of Lipshitz mapping into Hilbert space, Conf. Modern Anal. Probab., Am. Math. Soc., 1984, vol. 26, pp. 189–206.

  17. Achlioptas, D., Database-friendly random projections, Proc. Twentieth ACM Symp. Princ. Database Syst., pp. 274–281.

  18. Bingham, E. and Mannila, H., Random projection in dimensionality reduction: applications to image and text data, Proc. Seventh ACM SIGKDD Int. Conf. Knowl. Discovery Data Min., pp. 245–250.

  19. Vempala, S.S., The Random Projection Method. Vol. 65 , Providence, RI: Am. Math. Soc., 2005.

    Book  Google Scholar 

  20. Ganin, I.P., Kosichenko, E.A., and Kaplan, A.Ya., Properties of EEG responses to emotionally significant stimuli using a P300 wave-based brain–computer interface, Neurosci. Behav. Physiol., 2018, vol. 48, no. 9, pp. 1093–1099.

    Article  Google Scholar 

  21. Huber, F. and Zorner, T.O., Threshold cointegration in international exchange rates: a Bayesian approach, Int. J. Forecast., 2019, vol. 35, pp. 458–473.

    Article  Google Scholar 

  22. Kosinskia, M., Stillwella, D., and Groepelb, T., Private traits and attributes are predictable from digital records of human behaviour, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, no. 15, pp. 5802–5805.

    Article  Google Scholar 

  23. Blum, A. and Langly, P., Selection of relevant feature and examples in machine learning, Artif. Intell., 1997, vol. 97, no. 1–2, pp. 245–271.

    Article  MathSciNet  Google Scholar 

  24. Cover, T.M. and Thomas, J.A., Elements of Information Theory, New York: John Wiley & Sons, 1991.

    Book  Google Scholar 

  25. Peng, H.C., Long, F., and Ding, C., Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern Anal. Mach. Intell., 2005, vol. 27, no. 8, pp. 1226–1238.

    Article  Google Scholar 

  26. Zhang, Y., Li, S., Wang, T., and Zhang, Z., Divergence-based feature selection for separate classes, Neurocomputing, 2013, vol. 101, pp. 32–42.

    Article  Google Scholar 

  27. Darhovsky, B.S., Kaplan, A.Ya., and Shishkin, S.L., On an approach to the estimation of the complexity of curves (using as an example an electroencephalogram of a human being), Autom. Remote Control, 2002, vol. 63, no. 3, pp. 468–474.

    Article  Google Scholar 

  28. Darkhovskii, B.S. and Piryatinskaya, A., New approach to the segmentation problem for time series of arbitrary nature, Proc. Steklov Inst. Math., 2014, vol. 287, no. 1, pp. 54–67.

    Article  MathSciNet  Google Scholar 

  29. Darhovsky, B. and Piryatinska, A., Quickest detection of changes in the generating mechanism of a time series via the \(\varepsilon \)-complexity of continuous functions, Sequential Anal., 2014, vol. 33, pp. 231–250.

    Article  MathSciNet  Google Scholar 

  30. Efron, B., Bootstrap methods: another look at the jackknife, Ann. Stat., 1979, vol. 7, no. 1, pp. 1–26.

    Article  MathSciNet  Google Scholar 

  31. Bach, F.R., Bolasso: model consistent lasso estimation through the bootstrap, Proc. 25th Int. Conf. Mach. Learn. (2008), pp. 33–40.

  32. Popkov, Y.S., Asymptotic efficiency of maximum entropy estimates, Dokl. Math., 2020, vol. 102, no. 1, pp. 350–352. https://doi.org/10.1134/S106456242004016X

    Article  MathSciNet  Google Scholar 

  33. Ioffe, A.D. and Tikhomirov, V.M., Teoriya ekstremal’nykh zadach (Theory of Extremum Problems), Moscow: Nauka, 1974.

    Google Scholar 

  34. Darkhovsky, B.S., Popkov, Y.S., Popkov, A.Y., and Aliev, A.S., A method of generating random vectors with a given probability density function, Autom. Remote Control, 2018, vol. 79, no. 9, pp. 1569–1581.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-07-00470.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. S. Popkov, Yu. A. Dubnov or A. Yu. Popkov.

Additional information

Translated by V. Potapchouck

APPENDIX

Proof of Theorem 1. Let us use conditions (5.13), (5.14) to represent Eq. (5.12) in the form

$$ \phi (z) = \frac {\sum \limits ^N_{\alpha =l+1} z^{h_{\alpha }} c_{\alpha }}{\sum \limits ^l_{\alpha =1} z^{h_{\alpha }} c_{\alpha }} = 1.$$
(A.1)
According to (5.5), we have \(h_{l+1} - h_1 > 0\) and
$$ \phi (z) = z^{(h_{l+1} - h_1)}\frac {\sum \limits ^N_{\alpha =l+2} z^{h_{\alpha }} c_{\alpha } + c_{l+1}}{\sum \limits ^l_{\alpha =2} z^{h_{\alpha }} c_{\alpha } + c_1}.$$
(A.2)
It follows that
$$ \phi (0) = 0. $$
Now we represent the function \(\phi (z) \) in the form
$$ \phi (z) = z^{(h_{N} - h_l)}\frac {\sum \limits ^{N-1}_{\alpha =l+1} z^{h_{\alpha } - h_N} c_{\alpha } + c_{N}}{\sum \limits ^{l-1}_{\alpha =1} z^{h_{\alpha } - h_l} c_{\alpha } + c_l}. $$
(A.3)
It can readily be seen that
$$ \phi (\infty ) = + \infty .$$
Consider the derivative
$$ \phi ^{\prime }(z) = \frac {\sum \limits ^l_{\beta =1}\,\sum \limits ^N_{\alpha =l+1}\,c_{\beta }\, c_{\alpha }(h_{\alpha } - h_{\beta }) z^{(h_{\beta }-h_{\alpha })}}{\left (\sum \limits ^l_{\alpha =1} c_{\alpha }\,z^{h_{\alpha }} \right )^2} > 0.$$
(A.4)
Consequently, the function \(\phi (z)\) is monotone increasing, and Eqs. (A.1), (A.2) have a unique positive solution \(z^*>0 \). \(\quad \blacksquare \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popkov, Y.S., Dubnov, Y.A. & Popkov, A.Y. Entropy-Randomized Projection. Autom Remote Control 82, 490–505 (2021). https://doi.org/10.1134/S0005117921030097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921030097

Keywords

Navigation