Skip to main content
Log in

Software for the Problem of Constructing Cutting Tool Paths in CAD/CAM Systems for Technological Preparation of Cutting Processes

  • CONTROL IN TECHNICAL SYSTEMS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Most of the research on tool paths for cutting machines focuses on determining the path for contour cutting. State-of-the-art, resource-efficient sheet metal cutting technologies allow one to match the contours of the cut parts, thus reducing material waste and minimizing the cut length. However, the alignment of the boundaries of the cut contours is the source of a number of constraints formalized in terms of plane graphs: (1) ordered enclosing, (2) nonintersecting cutting path. The article considers the main data structures and algorithms used in the CAD/CAM system developed for technological preparation of cutting processes, which allows cutting plans with combined contours, as well as software that constructs a homeomorphic image of a graph to solve the problem of routing according to the cutting plan, solves this problem, and interprets the solution results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dewil, R., Vansteenwegen, P., and Cattrysse, D., A review of cutting path algorithms for laser cutters, Int. J. Adv. Manuf. Technol., 2016, vol. 87, pp. 1865–1884. https://doi.org/10.1007/s00170-016-8609-1

    Article  Google Scholar 

  2. Makarovskikh, T.A., Panyukov, A.V., and Savitsky, E.A., Mathematical models and routing algorithms for CAD technological preparation of cutting processes, Autom. Remote Control, 2017, vol. 78, no. 4, pp. 868–882.

    Article  MathSciNet  Google Scholar 

  3. Makarovskikh, T. and Panyukov, A., The cutter trajectory avoiding intersections of cuts, IFAC-PapersOnLine, 2017, vol. 50, no. 1, pp. 2284–2289. https://doi.org/10.1016/j.ifacol.2017.08.226

    Article  Google Scholar 

  4. Li, X., Liu, Zh., Wang, F., Yi, B., and Song, Y., Combining physical shell mapping and reverse-compensation optimisation for spiral machining of free-form surfaces, Int. J. Prod. Rts., 2018. https://doi.org/10.1080/00207543.2018.1512763

  5. Makarovskikh, T. and Panyukov, A., Development of routing methods for cutting out details, CEUR Workshop Proc., 2018, vol. 2098, pp. 249–263. http://ceur-ws.org/Vol-2098/paper22.pdf

    Google Scholar 

  6. Dewil, R., Vansteenwegen, P., Cattrysse, D., Laguna, M., and Vossen, T., An improvement heuristic framework for the laser cutting tool path problem, Int. J. Prod. Rts., 2015, vol. 53, no. 6, pp. 1761–1776. https://doi.org/10.1080/00207543.2014.959268

    Article  Google Scholar 

  7. Petunin, A. and Stylios, C., optimization models of tool path problem for CNC sheet metal cutting machines, IFAC-PapersOnLine, 2016, vol. 49, pp. 23–28. https://doi.org/10.1016/j.ifacol.2016.07.544

    Article  Google Scholar 

  8. Petunin, A., Chentsov, A.G., and Chentsov, P.A., About routing in the sheet cutting, Bull. South Ural State Univ. Ser.: Math. Model. Program. Comput. Software, 2017, vol. 10, no. 3, pp. 25–39. https://doi.org/10.14529/mmp170303

    Article  MATH  Google Scholar 

  9. Chentsov, A.G., Grigoryev, A.M., and Chentsov, A.A., Solving a routing problem with the aid of an independent computations scheme, Bull. South Ural State Univ. Ser. Math. Model. Program. Comput. Software, 2018, vol. 11, no. 1, pp. 60–74. https://doi.org/10.14529/mmp180106

    Article  MATH  Google Scholar 

  10. Khachay, M. and Neznakhina, K., Towards tractability of the Euclidean generalized travelling salesman problem in grid clusters defined by a grid of bounded height, Commun. Comput. Inf. Sci., 2018, vol. 871, pp. 68–77. https://link.springer.com/chapter/10.1007/978-3-319-93800-4_6

    Google Scholar 

  11. Chentsov, A., Khachay, M., and Khachay, D., Linear time algorithm for precedence constrained asymmetric generalized traveling salesman problem, IFAC-PapersOnLine, 2016, vol. 49, pp. 651–655. https://doi.org/10.1016/j.ifacol.2016.07.767

    Article  Google Scholar 

  12. Hoeft, J. and Palekar, U., Heuristics for the plate-cutting traveling salesman problem, IIE Trans., 1997, vol. 29, pp. 719–731. https://doi.org/10.1023/A:1018582320737

    Article  Google Scholar 

  13. Dewil, R., Vansteenwegen, P., and Cattrysse, D., Construction heuristics for generating tool paths for laser cutters, Int. J. Prod. Rts., 2014, vol. 52, no. 20, pp. 5965–5984. https://doi.org/10.1080/00207543.2014.895064

    Article  Google Scholar 

  14. Crockford, D., The Application/json Media Type for JavaScript Object Notation (JSON), Internet Engineering Task Force, 2006. https://www.rfc-editor.org/info/rfc4627

  15. Makarovskikh, T.A., Panyukov, A.V., and Savitskiy, E.A., Software for the problem of constructing cutting tool motion path, Tr. XVIII-i Mezhdunar. molodezhnoi konf. “Sistemy proektirovaniya, tekhnologicheskoi podgotovki proizvodstva i upravleniya etapami zhiznennogo tsikla promyshlennogo produkta (CAD/CAM/PDM-2018)” (Proc. XVIII Int. Youth Conf. “Design Systems for Industrial Technological Preparation and Control over Stages of an Industrial Product Lifecycle (CAD/CAM/PDM-2018)”) (2018), pp. 172–176.

  16. Makarovskikh, T.A., Panyukov, A.V., and Savitskiy, E.A., Cutting tool routing problem: software implementation, in Tr. XIII Vseross. soveshchaniya po problemam upravleniya (VSPU-2019) (Proc. XIII All-Russia Meeting on Control Problems (VSPU-2019)) Novikov, D.A., Ed., 2019, pp. 2650–2654.

  17. Makarovskikh, T.A., Panyukov, A.V., and Savitskiy, E.A., Software development for cutting tool routing problems, Procedia Manuf., 2019, vol. 29, pp. 567–574. https://doi.org/10.1016/j.promfg.2019.02.123

    Article  Google Scholar 

  18. Makarovskikh, T.A., Panyukov, A.V., and Savitskiy, E.A., Mathematical models and routing algorithms for economical cutting tool paths, Int. J. Prod. Rts., 2018, vol. 5, no. 3, pp. 1171–1188. https://doi.org/10.1080/00207543.2017.1401746

    Article  Google Scholar 

  19. Manber, U. and Bent, S.W., On non-intersecting Eulerian circuits, Discrete Appl. Math., 1987, vol. 18, pp. 87–94. https://doi.org/10.1016/0166-218X(87)90045-X

    Article  MathSciNet  MATH  Google Scholar 

  20. Makarovskikh, T.A., Software for constructing A-circuits with ordered enclosing in a plane connected 4-regular graph, Vestn. Yuzhn.-Ural. Gos. Univ. Ser. Vychisl. Mat. Inf., 2019, vol. 8, no. 1, pp. 36–53. https://doi.org/10.14529/cmse190103

    Article  Google Scholar 

  21. Makarovskikh, T.A., Constructing nonintersecting \(OE \)-routes in a plane Eulerian graph, Vestn. Yuzhn.-Ural. Gos. Univ. Ser. Vychisl. Mat. Inf., 2019, vol. 8, no. 4, pp. 30–42. https://doi.org/10.14529/cmse190403

    Article  Google Scholar 

  22. Makarovskikh, T.A., On the number of \(OE \)-trails for a fixed transition system, Vestn. Yuzhn.-Ural.Gos. Univ. Ser. Mat. Mekh. Fiz., 2016, vol. 8, no. 1, pp. 5–12. https://doi.org/10.14529/mmph160101

    Article  MATH  Google Scholar 

  23. Garey, M.R. and Johnson, D.S., Computers and Intractability: a Guide to the Theory of NP-Completeness, San Francisco: W.H. Freeman, 1979.

    MATH  Google Scholar 

Download references

Funding

This work was supported by the RF Government, Act no. 211 of March 16, 2013, Agreement no. 02.A03.21.0011 and by the RF Ministry of Science and Higher Education, State Order no. FENU-2020-0022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T. A. Makarovskikh or A. V. Panyukov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarovskikh, T.A., Panyukov, A.V. Software for the Problem of Constructing Cutting Tool Paths in CAD/CAM Systems for Technological Preparation of Cutting Processes. Autom Remote Control 82, 468–480 (2021). https://doi.org/10.1134/S0005117921030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921030073

Keywords

Navigation