Skip to main content
Log in

Identification of SNP markers associated with soybean fatty acids contents by genome-wide association analyses

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Composition of fatty acids (FAs) in soybean seed is important for the quality and uses of soybean oil. Using gas chromatography, we have measured soybean FAs profiles of 621 soybean accessions (maturity groups I through IV) grown in five different environments; Columbus, OH (2015), Wooster, OH (2014 and 2015), Plymouth, NC (2015), and Urbana, IL (2015). Using publicly available SoySNP50K genotypic data and the FA profiles from this study, a genome-wide association analysis was completed with a compressed mixed linear model to identify 43 genomic regions significantly associated with a fatty acid at a genome wide significance threshold of 5%. Among these regions, one and three novel genomic regions associated with palmitic acid and stearic acid, respectively, were identified across all five environments. Additionally, nine novel environment-specific FA-related genomic regions were discovered providing new insights into the genetics of soybean FAs. Previously reported FA-related loci, such as FATB1a, SACPD-C, and KASIII, were also confirmed in this study. Our results will be useful for future functional studies and marker-assisted breeding for soybean FAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbadi A, Brummel M, Schütt BS, Slabaugh MB, Schuch R, Spener F (2000) Reaction mechanism of recombinant 3-oxoacyl-(acyl-carrier-protein) synthase III from Cuphea wrightii embryo, a fatty acid synthase type II condensing enzyme. Biochem J 345:153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelghany AM, Zhang S, Azam M, Shaibu AS, Feng Y, Li Y, Tian Y, Hong H, Li B, Sun J (2019) Profiling of seed fatty acid composition in 1025 Chinese soybean accessions from diverse ecoregions. Crop J 8:635–644. https://doi.org/10.1016/j.cj.2019.11.002

    Article  Google Scholar 

  • Alt JL, Fehr WR, Welke GA, Sandhu D (2005) Phenotypic and molecular analysis of oleate content in the mutant soybean line M23. Crop Sci 45:1997–2000

    Article  CAS  Google Scholar 

  • Bachlava E, Burton JW, Brownie C, Wang S, Auclair J, Cardinal AJ (2008) Heritability of oleic acid content in soybean seed oil and its genetic correlation with fatty acid and agronomic traits. Crop Sci 48:1764–1772

    Article  CAS  Google Scholar 

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49:433–442

    Article  CAS  Google Scholar 

  • Bachleda N, Pham A, Li Z (2016) Identifying FATB1a deletion that causes reduced palmitic acid content in soybean N87-2122-4 to develop a functional marker for marker-assisted selection. Mol Breed 36:45

    Article  CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    Article  CAS  PubMed  Google Scholar 

  • Bellaloui N, Mengistu A, Kassem MA (2013) Effects of genetics and environment on fatty acid stability in soybean seed. Food Nutr Sci 4:165–175

    CAS  Google Scholar 

  • Byfield GE, Upchurch RG (2007) Effect of temperature on microsomal omega-3 linoleate desaturase gene expression and linolenic acid contetn in developing soybean seeds. Crop Sci 47:2445–2452

    Article  CAS  Google Scholar 

  • Cecil JL, Kurnik WJ, Babcock D (1988) Epoxy compositions containing glycidyl ethers of fatty esters. U.S. Patent U.S. Patent 4,786,666

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Csanádi GY, Vollmann J, Stift G, Lelley T (2001) Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet 103:912–919

    Article  Google Scholar 

  • De Vries BD, Fehr WR, Welke GA, Dewey RE (2011) Molecular characterization of the mutant fap3 (A22) allele for reduced palmitate concentration in soybean. Crop Sci 51:1611–1616

    Article  CAS  Google Scholar 

  • Diers BW, Shoemaker RC (1992) Restriction fragment length polymorphism analysis of soybean fatty acid content. J Am Oil Chem Soc 69:1242–1244

    Article  CAS  Google Scholar 

  • Eskandari M, Cober ER, Rajcan I (2013) Genetic control of soybean seed oil: I. QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents. Theor Appl Genet 126:483–495

    Article  CAS  PubMed  Google Scholar 

  • Fan S, Li B, Yu F, Han F, Yan S, Wang L, Sun J (2015) Anlaysis of additive and epistatic qiantitative trait loci underlying fatty acid concentrations in soybean seeds across multiple environments. Ephytica 206:689–700

    Article  CAS  Google Scholar 

  • Fang C, Ma Y, Wu S, Liu Z, Wang Z, Yang R, Hu G, Zhou Z, Yu H, Zhang M, Pan Y, Zhou G, Ren X, Du W, Yan H, Wang Y, Han D, Shen Y, Liu S, Liu T, Zhang J, Qin H, Yuan J, Yuan X, Kong F, Liu B, Li J, Zhang Z, Wang G, Zhu B, Tian Z (2017) Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biol 18:161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gillman JD, Stacey MG, Cui Y, Berg HR, Stacey G (2014) Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC Plant Biol 14:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Goettel W, Ramirez M, Upchurch RG, An YQ (2016) Identification and characterization of large DNA deletions affecting oil quality traits in soybean seeds through transcriptome sequencing analysis. Theor Appl Genet 129:1577–1593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha B-K, Kim H-J, Velusamy V, Vuong TD, Nguyen HT, Shannon JG, Lee J-D (2014) Identification of quatitative trait loci controlling linolenic acid concentration in PI 483463 (Glycine soja). Theor Appl Genet 127:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Teng W, Wang Y, Zhao X, Wu L, Li D, Li W (2015) Unconditional and conditional QTL underlying the genetic interrelationships between soybean seed isoflavone, and protein or oil contents. Plant Breed 134:300–309

    Article  CAS  Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of two different microsomal ω-6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landau-Ellis D, Steganiak TR, Schmidt ME (2004a) Seed quality QTL in a prominet soybean population. Theor Appl Genet 109:552–561

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Pantalone VR, Saxton AM, Schmidit ME, Sam CE (2004b) Molecular mapping and identification of soybean fatty acid modifier quantitative trait loci. J Am Oil Chem Soc 81:1115–1118

    Article  CAS  Google Scholar 

  • Iyer LM, Koonin EV, Aravind L (2001) Adaptations of the helix-grip fold for ligand binding and catalysis in the START domain superfamily. Proteins 43:134–144

    Article  CAS  PubMed  Google Scholar 

  • Jackowski S, Rock CO (1987) Altered molecular form of acyl carrier protein associated with beta-ketoacyl-acyl carrier protein synthase II (fabF) mutants. J Bacteriol 169:1469–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanobe C, McCarville MT, O’Neal ME, Tylka GL, MacIntosh GC (2015) Soybean aphid infestation induces changes in fatty acid metabolism in soybean. PLoS One 10:e0145660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim H-K, Kim Y-C, Kim S-T, Son B-G, Choi Y-W, Kang J-S, Park Y-H, Cho Y-S, Choi I-S (2010) Analysis of quantitative trait loci (QTLs) for seed size and fatty acid composition using recombinant inbred lines in soybean. J Life Sci 20:1186–1192

    Article  CAS  Google Scholar 

  • Leamy LJ, Zhang H, Li C, Chen CY, Song B-H (2017) A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics 18:18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee SH, Bailey MA, Mian MAR, Carter TE Jr, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996) RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genent 93:649–657

    Article  CAS  Google Scholar 

  • Lee S, Jun T-H, McHale LK, Michel AP, Dorrance AE, Song Q, Mian MA (2017) Registration of Wyandot × PI 567301B soybean recombinant inbred line population. J Plant Reg 11:324–327

    Article  Google Scholar 

  • Lee S, Van K, Sung M, Nelson R, LaMantia J, McHale LK, Mian MAR (2019) Genome-wide association study of seed protein, oil and amino acid contents in soybean from maturity groups I to IV. Theor Appl Genet 132:1639–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leite DC, Pinheiro JB, Campos JB, Di Mauro AO, Uneda-Trevisoli SH (2016) QTL mapping of soybean oil content for marker-assisted selection in plant breeding program. Genet Mol Res 15:1–11

    Google Scholar 

  • Li Z, Wilson RF, Rayford WE, Boerma HR (2002) Molecular mapping genes conditioning reduced palmitic acid content in N87-2122-4 soybean. Crop Sci 42:373–378

    Article  CAS  Google Scholar 

  • Li H, Zhao T, Wang Y, Yu D, Chen S, Zhou R, Gai J (2011) Genetic structure composed of additive QTL, epistatic QTL pairs and collective unmapped minor QTL conferring oil content and fatty acid components of soybeans. Euphytica 182:117–132

    Article  Google Scholar 

  • Li Y-H, Reif JC, Ma Y-S, Hong H-L, Liu Z-X, Chang R-Z, Qiu L-J (2015) Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean. BMC Genomics 16:841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang HZ, Yu YL, Wang SF, Yun LI, Wang TF, Wei YL, Gong PT, Liu XY, Fang XJ, Zhang MC (2010) QTL mapping of isoflavone, oil and protein contents in soybean (Glycine max L. Merr.). Agric Sci China 9:1108–1116

    Article  CAS  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Singh S, Green A (2002) High-oleic and high-stearic cottonseed oils: nutritionally improved cooking oils developed using gene silencing. J Am Coll Nutr 21:205S–211S

    Article  CAS  PubMed  Google Scholar 

  • Lunn J, Theobald HE (2006) The health effects of dietary unsaturated fatty acids. Nutr Bull 31:178–224

    Article  Google Scholar 

  • Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agrnomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336

    Article  CAS  Google Scholar 

  • Mao T, Jiang Z, Han Y, Teng W, Zhao X, Li W (2013) Identification of quantitative trait loci underlying seed protein and oil contents of soybean across multi-genetic backgrounds and environments. Plant Breed 132:630–641

    Article  CAS  Google Scholar 

  • Martin BA, Rinne RW (1986) A comparison of oleic acid metabolism in the soybean (Glycine max [L.] Merr.) genotypes Williams and A5, a mutant with decreased linoleic acid in the seed. Plant Physiol 81:41–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matei G, Meneguzzi C, Woyann LG, Todeschini MH, Trevizan DM, Conte J, Bozi AH, Benin G (2018) Oil, protein and fatty acid profiles of Brazilian soybean cultivars in multi-environmental trials. Aust J Crop Sci 12:686–698

    Article  CAS  Google Scholar 

  • McHale LK, Feller MK, McIntyre SA, Berry SA, St. Martin SK, Dorrance AE (2012) Registration of ‘Summit,’ a high-yielding soybean with race-specific resistance to Phytophthora sojae. J Plant Reg 7:36–41

    Article  Google Scholar 

  • Mensink RP, Katan MB (1992) Effect of dietary fatty acids on serum lipids and lipoproteins. Arterioscler Thromb Vasc Biol 12:911–919

    Article  CAS  Google Scholar 

  • Mian MAR, Cooper RL, Dorrance AE (2008) Registration of ‘Prohio’ soybean. J Plant Reg 2:208–210

    Article  Google Scholar 

  • Nagawa S, Xu T, Yang Z (2010) RHO GTPase in plants: Conservation and inventions of regulators and effectors. Samll GTPases 1:78–88

    Article  Google Scholar 

  • Nwokolo E (1996) Soybean (Glycine max (L.) Merr.). In: Nwokolo E, Smartt J (eds) Food and Feed from Legumes and Oilseeds. Springer, Boston, MA

    Chapter  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panthee DR, Pantalone VR, Saxton AM (2006) Modifier QTL for fatty acid composition in soybean oil. Euphytica 152:67–73

    Article  CAS  Google Scholar 

  • Pathan SM, Vuong T, Clark K, Lee J-D, Shannon JG, Roberts CA, Ellersieck MR, Burton JW, Cregan PB, Hyten DL, Nguyen HT, Sleper DA (2013) Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci 53:765–774

    Article  CAS  Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10:195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qi Z-M, Han X, Sun YN, Qiong WU, Shan DP, Du XY, Liu CY, Jiang HW, Hu GH, Chen QS (2011) An integrated quantitative trait locus map of oil content in soybean, Glycine max (L.) Merr., generated using a meta-analysis method for mining genes. Agric Sci China 10:1681–1692

    Article  CAS  Google Scholar 

  • Reinprecht Y, Poysa VW, Yu K, Rajcan R, Ablett GR, Pauls KP (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49:1510–1527

    Article  CAS  PubMed  Google Scholar 

  • Rolling W, Lake R, Dorrance AE, McHale LK (2020) Genome-wide association analyses of quantitative disease resistance in diverse sets of soybean [Glycine max (L.) Merr.]. PLoS One 15:e02227710

    Article  CAS  Google Scholar 

  • Rossi ME, Orf JH, Liu L-J, Dong Z, Rajcan I (2013) Genetic basis of soybena adaptation to North American vs. Asian mega-environments in two independent populations from Canadian x Chinese crosses. Theor Appl Genet 126:1809–1823

    Article  PubMed  Google Scholar 

  • Schneider R, Rolling W, Song Q, Cregan P, Dorrance AE, McHale LK (2016) Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genomics 17:607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song QJ, Marek LF, Shoemaker RC, Lark KG, Concibido VC, Delannay X, Specht JE, Cregan PB (2004) A new integrated genetic linkage map of the soybean. Theor Appl Genet 109:122–128

    Article  CAS  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2015) Fingerprinting soybean germplasm and its utility in genomic research. G3: Genes Genom Genet 5:1999–2006

    Article  Google Scholar 

  • SoyStats (2019) http://soystats.com. Accessed 20 Nov 2019

  • Spencer MM, Landau-Ellis D, Meyer EJ, Pantalone VR (2004) Molecular markers associated with linolenic acid content in soybean. J Am Oil Chem Soc 81:559–562

    Article  CAS  Google Scholar 

  • Tajuddin T, Watanabe S, Yamanaka N, Harada K (2003) Analysis of quantitative trait loci for protein and lipid contents in soybean seeds using recombinant inbred lines. Breed Sci 53:133–140

    Article  CAS  Google Scholar 

  • Thapa R, Carrero-Colón M, Hudson KA (2016) New alleles of FATB1A to reduce palmitic acid levels in soybean. Crop Sci 56:1076–1080

    Article  CAS  Google Scholar 

  • Toubiana D, Semel Y, Tohge T, Beleggia R, Cattivelli L, Rosental L, Nikoloski Z, Zamir D, Fernie AR, Fait A (2012) Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genet 8:e1002612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van K, McHale LK (2017) Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean [Glycine max (L.) Merr.] seed. Int J Mol Sci 18:1180

    Article  PubMed Central  CAS  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Vaughn JN, Nelson RL, Song Q, Cregan PB, Li Z (2014) The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3: Genes Genom Genet 4:2283–2294

    Article  Google Scholar 

  • Vuong TD, Sonah H, Meinhardt CG, Deshmukh R, Kadam S, Nelson RL, Shannon JG, Nguyen HT (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16:593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh MC, Klopfenstein WE, Harwood JL (1990) The short chain condensing enzyme has a widespread occurrence in the fatty acid synthetases from higher plants. Phytochem 29:3797–3799

    Article  CAS  Google Scholar 

  • Wang N, Akey JM, Zhang K, Chakraborty R, Jin L (2002) Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. Am J Hum Genet 71:1227–1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jiang GL, Green M, Scott RA, Hyten DL, Cregan PB (2012) Quantitative trait locus analysis of saturated fatty acids in a population of recombinant inbred lines of soybean. Mol Breed 30:1163–1179

    Article  Google Scholar 

  • Wang X, Jiang GL, Green M, Scott RA, Song Q, Hyten DL, Cregan PB (2014) Identification and validation of quantitative trait loci for seed yield, oil and protein contetns in two recombinant inbred line populations of soybean. Mol Genet Genomics 289:935–949

    Article  CAS  PubMed  Google Scholar 

  • Wolf RB, Cavins JF, Kleiman R, Black LT (1982) Effect of temperature on soybean seed constituents oil, protein, moisture, fatty acids, amino acids and sugars. J Am Oil Chem Soc 59:230–232

  • Xie D, Han Y, Zeng Y, Chang W, Teng W, Li W (2012) SSR- and SNP-related QTL underlying linolenic acid and other fatty acid contents in soybean seeds across multiple environments. Mol Breed 30:169–179

  • Zhang P, Burton JW, Upchurch RG, Whittle E, Shanklin J, Dewey RE (2008) Mutations in a Δ9-stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds. Crop Sci 48:2305–2313

    Article  CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Liu X, Wang G, Wang H, Liu J, Zhao W, Zhang Y (2015) Crude fat content and fatty acid profile and their correlations in foxtail millet. Cereal Chem 92:455–459

    Article  CAS  Google Scholar 

  • Zhang J, Wang X, Lu Y, Bhusal SJ, Song Q, Cregan PB, Yen Y, Brown M, Jiang GL (2018) Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Mol Plant 11:460–472

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Chang H, Feng L, Jing Y, Teng W, Qiu L, Zheng H, Han Y, Li W (2019) Genome-wide association mapping and candidate gene analysis for saturated fatty acid content in soybean seed. Plant Breed 138:588–598

    Article  CAS  Google Scholar 

  • Zheng H, Rowland O, Kunst L (2005) Disruptions of the arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17:1467–1481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

We appreciate Layne Connolly and Brandon McNeece for grammatical editing.

Funding

The authors gratefully acknowledge the financial support for this study by United Soybean Board to LKM (Project# 1720-162-0111) and MARM (Project# 1720-152-0106). Salaries and research support for this project were also provided in part by the USDA National Institute of Food and Agriculture, Hatch project OHO01279 to LKM.

Author information

Authors and Affiliations

Authors

Contributions

MS conducted genetic and field experiments, analyzed data, and drafted and edited manuscript. KV conducted field experiments and wrote and edited manuscript. SL, KV, JL, and ET conducted field experiments and edited manuscript. RN contributed to selecting soybean accessions, conducted field experiments, and edited manuscript. LKM and MARM designed and organized the project and edited manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leah K. McHale.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PPTX 2738 kb)

ESM 2

(XLSX 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sung, M., Van, K., Lee, S. et al. Identification of SNP markers associated with soybean fatty acids contents by genome-wide association analyses. Mol Breeding 41, 27 (2021). https://doi.org/10.1007/s11032-021-01216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01216-1

Keywords

Navigation