Skip to main content
Log in

Quantum Optimal Transport with Quantum Channels

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We propose a new generalization to quantum states of the Wasserstein distance, which is a fundamental distance between probability distributions given by the minimization of a transport cost. Our proposal is the first where the transport plans between quantum states are in natural correspondence with quantum channels, such that the transport can be interpreted as a physical operation on the system. Our main result is the proof of a modified triangle inequality for our transport distance. We also prove that the distance between a quantum state and itself is intimately connected with the Wigner-Yanase metric on the manifold of quantum states. We then specialize to quantum Gaussian systems, which provide the mathematical model for the electromagnetic radiation in the quantum regime. We prove that the noiseless quantum Gaussian attenuators and amplifiers are the optimal transport plans between thermal quantum Gaussian states, and that our distance recovers the classical Wasserstein distance in the semiclassical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften, Springer, Berlin (2008)

    MATH  Google Scholar 

  2. Ambrosio, L.: Gigli, Nicola, Savaré, Giuseppe: Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn. Birkhäuser Verlag, Basel (2008)

    Google Scholar 

  3. Santambrogio, Filippo: Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and their Applications, vol. 87. Birkhäuser/Springer, Cham (2015)

    MATH  Google Scholar 

  4. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Figalli, A., Maggi, F., Pratelli, A.: A mass transportation approach to quantitative isoperimetric inequalities. Invent. Math. 182(1), 167–211 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Sturm, K.-T.: Convex functionals of probability measures and nonlinear diffusions on manifolds. J. Math. Pures Appl. 84(2), 149–168 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lott, J., Villani, C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169(3), 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ambrosio, L., Savaré, G., Zambotti, L.: Existence and stability for Fokker-Planck equations with log-concave reference measure. Probab. Theory Relat. Fields 145(3–4), 517–564 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caracciolo, S., Lucibello, C., Parisi, G., Sicuro, G.: Scaling hypothesis for the euclidean bipartite matching problem. Phys. Rev. E 90, 57 (2014)

    Article  Google Scholar 

  10. Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607 (2019)

    Article  MATH  Google Scholar 

  11. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)

  12. Kantorovitch, L.: On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37, 199–201 (1942)

    MathSciNet  MATH  Google Scholar 

  13. Bogachev, V.I.: Measure Theory. II, vol. I. Springer, Berlin (2007)

    Book  MATH  Google Scholar 

  14. Brenier, Y.: Décomposition polaire et réarrangement monotone des champs de vecteurs. C. R. Acad. Sci. Paris Sér. I Math. 305(19), 805–808 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Carlen, E.A., Maas, J.: An analog of the 2-Wasserstein Metric in non-commutative probability under which the Fermionic Fokker-Planck equation is gradient flow for the entropy. Commun. Math. Phys. 331(3), 887–926 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Carlen, E.A., Maas, J.: Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance. J. Funct. Anal. 273(5), 1810–1869 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carlen, E.A., Maas, J.: Non-commutative calculus, optimal transport and functional inequalities in dissipative quantum systems. J. Stat. Phys. 178(2), 319–378 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Rouzé, C., Datta, N.: Concentration of quantum states from quantum functional and transportation cost inequalities. J. Math. Phys. 60(1), 150 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Datta, N., Rouzé, C.: Relating relative entropy, optimal transport and fisher information: a quantum hwi inequality. In: Annales Henri Poincaré, pp. 1–36. Springer (2020)

  20. Chen, Y., Georgiou, T.T., Tannenbaum, A.R.: Matrix optimal mass transport: a quantum mechanical approach. IEEE Trans. Autom. Contr. 63(8), 2612–2619 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, Y., Georgiou, T.T., Tannenbaum, A.: Wasserstein geometry of quantum states and optimal transport of matrix-valued measures. In: Emerging Applications of Control and Systems Theory, pp. 139–150. Springer (2018)

  22. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numerische Mathematik 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Palma, D., Giacomo, H.S.: The conditional Entropy Power Inequality for quantum additive noise channels. J. Math. Phys. 59(12), 183 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Golse, F., Mouhot, C., Paul, T.: On the mean field and classical limits of quantum mechanics. Commun. Math. Phys. 343(1), 165–205 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Caglioti, E., Golse, F., Paul, T.: Towards optimal transport for quantum densities. working paper or preprint (2018)

  26. Golse, F.: The quantum N-body problem in the mean-field and semiclassical regime. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376(2118), 20170229 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Golse, F., Paul, T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Ration. Mech. Anal. 223(1), 57–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Golse, F., Paul, T.: Wave packets and the quadratic Monge-Kantorovich distance in quantum mechanics. C.R. Math. 356(2), 177–197 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Caglioti, E., Golse, F., Paul, T.: Quantum optimal transport is cheaper. J. Stat. Phys. 5, 61 (2020)

    MathSciNet  MATH  Google Scholar 

  30. Lloyd, S., Weedbrook, C.: Quantum generative adversarial learning. Phys. Rev. Lett. 121(4), 51 (2018)

    Article  MathSciNet  Google Scholar 

  31. Chakrabarti, S., Yiming, H., Li, T., Feizi, S., Wu, X.: Quantum wasserstein generative adversarial networks. In: Wallach, H., Larochelle, H., Beygelzimer, A., D’Alchè Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 6781–6792. Curran Associates, Inc., London (2019)

    Google Scholar 

  32. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2017)

    MATH  Google Scholar 

  33. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. OUP Oxford, Oxford (2007)

    Book  MATH  Google Scholar 

  34. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th. Anniversary Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  35. Holevo, A.S.: Quantum Systems, Channels, Information: A Mathematical Introduction. Texts and Monographs in Theoretical Physics. De Gruyter, Oxford (2019)

    Book  MATH  Google Scholar 

  36. Gibilisco, P., Isola, T.: Wigner-Yanase information on quantum state space: the geometric approach. J. Math. Phys. 44(9), 3752–3762 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  38. Braunstein, S.L., Loock, V.P.: Quantum information with continuous variables. Rev. Mod. Phys. 77(2), 513 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Weedbrook, C., Pirandola, S., Garcia-Patron, R., Cerf, N.J., Ralph, T.C., Shapiro, J.H., Lloyd, S.: Gaussian quantum information. Rev. Mod. Phys. 84(2), 621 (2012)

    Article  ADS  Google Scholar 

  40. Schuld, M.: Supervised Learning with Quantum Computers. Quantum science and technology, Springer, Berlin (2018)

    Book  MATH  Google Scholar 

  41. Royer, A.: Wigner function in liouville space: a canonical formalism. Phys. Rev. A 43(1), 44 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  42. D’Ariano, G.M., Lo Presti, P., Sacchi, M.F.: Bell measurements and observables. Phys. Lett. A 272(1–2), 32–38 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Lieb, Elliott H: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Les rencontres physiciens-mathématiciens de Strasbourg-RCP25, 19:0–35 (1973)

  45. Moore, E.H.: On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc. 26, 394–395 (1920)

    Google Scholar 

  46. Ferraro, A., Olivares, S., Paris, M.: Gaussian States in Quantum Information. Napoli series on physics and astrophysics, Bibliopolis, New York (2005)

    Google Scholar 

  47. Serafini, A.: Quantum Continuous Variables: A Primer of Theoretical Methods. CRC Press, Oxford (2017)

    Book  MATH  Google Scholar 

  48. Alexander, S.H.: Gaussian optimizers and the additivity problem in quantum information theory. Rus. Math. Surv. 70(2), 331 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Palma, D., Giacomo, T., Dario, G., Vittorio, A.L.: Gaussian optimizers for entropic inequalities in quantum information. J. Math. Phys. 59(8), 172 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  50. Barnett, S., Radmore, P.M.: Methods in Theoretical Quantum Optics. Oxford Series in Optical and Imaging Sciences, Clarendon Press, Oxford (2002)

    Book  MATH  Google Scholar 

  51. Holevo, A.S.: One-mode quantum Gaussian channels: structure and quantum capacity. Problems Inf. Transm. 43(1), 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Palma, D.G.: The squashed entanglement of the noiseless quantum Gaussian attenuator and amplifier. J. Math. Phys. 60(11), 120 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  53. Palma, D.G., Trevisan, D.: The conditional entropy power inequality for bosonic quantum systems. Commun. Math. Phys. 360(2), 639–662 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Barnum, H.: Quantum rate-distortion coding. Phys. Rev. A 62, 26 (2000)

    Article  Google Scholar 

  55. Devetak, I., Berger, T.: Quantum rate-distortion theory for iid sources. In: Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No. 01CH37252), pp. 276. IEEE (2001)

  56. Devetak, I., Berger, T.: Quantum rate-distortion theory for memoryless sources. IEEE Trans. Inf. Theory 48(6), 1580–1589 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Chen, X., Wang, W.: Entanglement information rate distortion of a quantum gaussian source. IEEE Trans. Inf. Theory 54(2), 743–748 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  58. Datta, N., Hsieh, M., Wilde, M.M.: Quantum rate distortion, reverse Shannon theorems, and source-channel separation. IEEE Trans. Inf. Theory 59(1), 615–630 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  59. Datta, N., Hsieh, M.-H., Wilde, M.M., Winter, A.: Quantum-to-classical rate distortion coding. J. Math. Phys. 54(4), 59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. Wilde, M.M., Datta, N., Hsieh, M.-H., Winter, A.: Quantum rate-distortion coding with auxiliary resources. IEEE Trans. Inf. Theory 59(10), 6755–6773 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  61. Salek, S., Cadamuro, D., Kammerlander, P., Wiesner, K.: Quantum rate-distortion coding of relevant information. IEEE Trans. Inf. Theory 65(4), 2603–2613 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Cover, T.M., Thomas, J.A.: Elements of Information Theory. A Wiley-Interscience publication, Wiley, New York (2006)

    MATH  Google Scholar 

  63. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, Vol. 70, pp. 214–223 (2017)

  64. De Palma, G., Marvian, M., Trevisan, D., Lloyd, S.: The quantum Wasserstein distance of order 1. arXiv preprint arXiv:2009.04469 (2020)

  65. Kiani, B., De Palma, G., Marvian, M., Liu, Z.-W., Lloyd, S.: Quantum Earth Mover’s Distance: A New Approach to Learning Quantum Data. arXiv preprint arXiv:2101.03037 (2021)

  66. Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Functional analysis. Number v. 1 in Methods of Modern Mathematical Physics. Academic Press, (1980)

  67. Bogachev, V.I.: Measure Theory. Number v. 1 in Measure Theory. Springer, Berlin (2007)

Download references

Acknowledgements

GdP was supported by the USA Air Force Office of Scientific Research and the USA Army Research Office under the Blue Sky program. DT is a member of Gnampa group (INdAM). DT has been partially supported by the University of Pisa, Project PRA 2018-49 and Gnampa project 2019 “Proprietà analitiche e geometriche di campi aleatori”. We thank Luigi Ambrosio for useful remarks on a preliminary version of this work and Emanuele Caglioti for fruitful discussions and for a careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo De Palma.

Additional information

Communicated by Matthias Christandl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Continuity of the Quantum Wasserstein Distance

Compactness of Quantum Plans

Recall that a sequence \(\{ A_n \}_{n=0}^\infty \subset {\mathcal {B}}({\mathcal {H}})\) weakly converges towards \(A \in {\mathcal {B}}({\mathcal {H}})\) if, for every \(|\phi \rangle , |\psi \rangle \in {\mathcal {H}}\),

$$\begin{aligned} \lim _{n \rightarrow \infty } \langle \phi | A_n| \psi \rangle = \langle \phi | A | \psi \rangle . \end{aligned}$$
(136)

Lemma 4

Given \(\{\rho _n\}_{n =0 }^\infty \subseteq {\mathcal {S}}({\mathcal {H}})\), there exists \(\rho \in {\mathcal {T}}_1({\mathcal {H}})\), \(\rho \ge 0\), \(\mathrm {Tr}_{{\mathcal {H}}}\left[ \rho \right] \le 1\) and a subsequence \(\{\rho _{n_k}\}_{k=0}^\infty \) weakly converging towards \(\rho \) . If \(\mathrm {Tr}_{{\mathcal {H}}}\left[ \rho \right] =1\) then convergence holds in the trace norm.

Proof

The first statement is a consequence of Banach–Alaoglu theorem and lower semicontinuity of the trace, see also the proof of [35, Theorem 11.2]. The second statement is [35, Lemma 11.1]. \(\square \)

Because of the result above, we may consider weak convergence or equivalently in the trace norm for a sequence of quantum states \(\{\rho _n\}_{n =0}^\infty \), provided that the limit \(\rho \) is a quantum state. Hence, we often omit to specify which type of convergence we consider on quantum states in the results below.

Proposition 8

Let \(\rho \), \(\sigma \in {\mathcal {S}}({\mathcal {H}})\) be quantum states and let \(\{\Pi _n\}_{n=0}^\infty \subset {\mathcal {S}}({\mathcal {H}}\otimes {\mathcal {H}}^*)\) be a sequence of quantum couplings \(\Pi _n \in {\mathcal {C}}(\rho _n, \sigma _n)\) such that \(\lim _n \rho _n = \rho \), \(\lim _n \sigma _n = \sigma \). Then, there exists a subsequence \(\{ \Pi _{n_k} \}_{k=0}^\infty \) converging towards \(\Pi \in {\mathcal {C}}(\rho , \sigma )\).

Proof

Existence of a weak limit \(\Pi = \lim _{k} \Pi _{n_k} \in {\mathcal {T}}_1({\mathcal {H}})\), \(\Pi \ge 0\), follows from Proposition 4. To argue that \(\mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*} [\Pi ] = 1\), let P, \(Q \in {\mathcal {B}}({\mathcal {H}})\) be projectors with \(P+Q = {\mathbb {I}}_{{\mathcal {H}}}\) and P with finite rank. We have

$$\begin{aligned} \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ \Pi ]&\ge \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (P \otimes P^T) \Pi (P \otimes P^T)]\nonumber \\&= \lim _{n\rightarrow \infty } \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (P \otimes P^T) \Pi _n (P \otimes P^T)], \end{aligned}$$
(137)

where the limit holds because \(P\otimes P^T\) has finite rank. Then,

$$\begin{aligned}&\mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (P \otimes P^T) \Pi _n (P \otimes P^T)] \nonumber \\&= \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*} [\Pi _n] - \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (P \otimes Q^T) \Pi _n (P \otimes Q^T)]\nonumber \\&\quad -\mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (Q \otimes {\mathbb {I}}_{{\mathcal {H}}^*}) \Pi _n (Q \otimes {\mathbb {I}}_{{\mathcal {H}}^*})]\nonumber \\&= 1 - \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (P \otimes Q^T) \Pi _n (P \otimes Q^T)] -\mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (Q \otimes {\mathbb {I}}_{{\mathcal {H}}^*}) \Pi _n (Q \otimes {\mathbb {I}}_{{\mathcal {H}}^*})]. \end{aligned}$$
(138)

We have the inequality

$$\begin{aligned} \mathrm {Tr}_{{\mathcal {H}}}[(P\otimes Q^T) \Pi _n (P\otimes Q^T)] \le \mathrm {Tr}_{{\mathcal {H}}}[({\mathbb {I}}_{{\mathcal {H}}} \otimes Q^T) \Pi _n ( {\mathbb {I}}_{{\mathcal {H}}}\otimes Q^T)] \le Q^T \rho _n^T Q^T. \end{aligned}$$
(139)

Taking the partial trace with respect to \({\mathcal {H}}^*\),

$$\begin{aligned} \limsup _{n\rightarrow \infty } \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (P \otimes Q^T) \Pi _n (P \otimes Q^T)]&\le \limsup _{n\rightarrow \infty } \mathrm {Tr}_{{\mathcal {H}}^*}[ Q^T \rho ^T_n Q^T]\nonumber \\&= \mathrm {Tr}_{{\mathcal {H}}^*}[Q^T\rho ^TQ^T] = \mathrm {Tr}_{{\mathcal {H}}}[Q\rho Q]. \end{aligned}$$
(140)

Similarly, \(\limsup _n \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ (Q \otimes {\mathbb {I}}_{{\mathcal {H}}^*}) \Pi _n (Q \otimes {\mathbb {I}}_{{\mathcal {H}}^*})] \le \mathrm {Tr}_{{\mathcal {H}}}[ Q \sigma Q]\). It follows that

$$\begin{aligned} \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*}[ \Pi ] \ge 1- \mathrm {Tr}_{{\mathcal {H}}}[ Q \rho Q]-\mathrm {Tr}_{{\mathcal {H}}}[ Q \sigma Q]. \end{aligned}$$
(141)

Letting \(P \rightarrow {\mathbb {I}}_{{\mathcal {H}}}\) weakly, both \(Q\rho Q\) and \(Q \sigma Q\) converge to 0 in the trace norm, hence the thesis. \(\square \)

A similar argument gives the following result.

Lemma 5

Given quantum states \(\rho \), \(\sigma \in {\mathcal {S}}({\mathcal {H}})\) let \(\{ P_n \}_{n=0}^\infty \), \(\{ Q_n\}_{n=0}^\infty \subset {\mathcal {B}}({\mathcal {H}})\) be such that \(0 \le P_n \le {\mathbb {I}}_{{\mathcal {H}}}\), \(0 \le Q_n \le {\mathbb {I}}_{{\mathcal {H}}}\), and \(\lim _n P_n\rho P_n = \rho \), \(\lim _n Q_n \sigma Q_n= \sigma \). Then, for any \(\Pi \in {\mathcal {C}}(\rho , \sigma )\),

$$\begin{aligned} \lim _{n\rightarrow \infty } \left( Q_n \otimes P^T_n\right) \Pi \left( Q_n \otimes P^T_n\right) = \Pi \end{aligned}$$
(142)

in the trace norm.

Proof

The assumption \(\lim _n P_n \rho P_n = \rho \) implies that \(\{P_n\}_{n=0}^\infty \) weakly converges to the identity operator on \(\mathrm {supp}\, \rho \). By a density argument, it is sufficient to prove that, for any \(|\phi \rangle \) eigenvector for \(\rho \), \(\rho |\phi \rangle = p | \phi \rangle \), with \(p>0\), one has \(\lim _n P_n |\phi \rangle = |\phi \rangle \). Since \(p |\phi \rangle \langle \phi | \le \rho \), we have indeed

$$\begin{aligned}&\Vert ({\mathbb {I}}_{{\mathcal {H}}} - P_n) |\phi \rangle \Vert ^2 = \mathrm {Tr} [ ({\mathbb {I}}_{{\mathcal {H}}} - P_n) |\phi \rangle \langle \phi | ({\mathbb {I}}_{{\mathcal {H}}} - P_n)] \nonumber \\&\le p^{-1} \mathrm {Tr}[({\mathbb {I}}_{{\mathcal {H}}} - P_n) \rho ({\mathbb {I}}_{{\mathcal {H}}} - P_n)] \rightarrow 0. \end{aligned}$$
(143)

Similarly, we have that \(\{Q_n\}_{n=0}^\infty \) weakly converges to the identity operator on \(\mathrm {supp}\, \sigma \). We deduce that \(\{ Q_n \otimes P_n^T \}_{n=0}^\infty \) weakly converges to the identity operator on \(\mathrm {supp}\, \sigma \otimes \mathrm {supp}\, \rho ^T\), which contains \(\mathrm {supp}\, \Pi \). Hence, (142) holds in the weak sense.

We prove next that

$$\begin{aligned} \lim _{n\rightarrow \infty } \mathrm {Tr}[ (Q_n \otimes P^T_n) \Pi (Q_n \otimes P^T_n)] = 1. \end{aligned}$$
(144)

We write

$$\begin{aligned}&\mathrm {Tr}[ (Q_n \otimes P^T_n) \Pi (Q_n \otimes P^T_n)] \nonumber \\&= 1-\mathrm {Tr}[ \left( Q_n \otimes ({\mathbb {I}}_{{\mathcal {H}}^*} - P_n^T)\right) \, \Pi \, \left( Q_n \otimes ( {\mathbb {I}}_{{\mathcal {H}}^*} - P_n^T\right) ]\nonumber \\&\quad -\mathrm {Tr}[ \left( ( {\mathbb {I}}_{{\mathcal {H}}} -Q_n) \otimes {\mathbb {I}}_{{\mathcal {H}}^*} \right) \Pi \left( ({\mathbb {I}}_{{\mathcal {H}}} -Q_n) \otimes {\mathbb {I}}_{{\mathcal {H}}^*} \right) ]. \end{aligned}$$
(145)

If we take the partial trace with respect to \({\mathcal {H}}\), then

$$\begin{aligned}&\mathrm {Tr}_{{\mathcal {H}}} [ \left( Q_n \otimes ({\mathbb {I}}_{{\mathcal {H}}^*} - P_n^T)\right) \, \Pi \, \left( Q_n \otimes ( {\mathbb {I}}_{{\mathcal {H}}^*} - P_n^T\right) ]\nonumber \\&\le ({\mathbb {I}}_{{\mathcal {H}}^*} - P_n^T) \mathrm {Tr}_{{\mathcal {H}}} [\Pi ] ({\mathbb {I}}_{{\mathcal {H}}^*} - P_n^T) = (\rho -P_n \rho P_n)^T, \end{aligned}$$
(146)

so that

$$\begin{aligned} \lim _{n\rightarrow \infty } \mathrm {Tr}[ \left( Q_n \otimes ({\mathbb {I}}_{{\mathcal {H}}^*} - P_n^T)\right) \, \Pi \, \left( Q_n \otimes ( {\mathbb {I}}_{{\mathcal {H}}^*} - P_n^T\right) ] =0. \end{aligned}$$
(147)

Arguing similarly, taking the partial trace with respect to \({\mathcal {H}}^*\),

$$\begin{aligned} \lim _{n\rightarrow \infty } \mathrm {Tr}\left[ \left( ( {\mathbb {I}}_{{\mathcal {H}}} -Q_n) \otimes {\mathbb {I}}_{{\mathcal {H}}^*} \right) \Pi \left( ({\mathbb {I}}_{{\mathcal {H}}} -Q_n) \otimes {\mathbb {I}}_{{\mathcal {H}}^*}\right) \right]&\le \lim _{n\rightarrow \infty } \mathrm {Tr}_{{\mathcal {H}}}\left[ \sigma - Q_n \sigma Q_n\right] \nonumber \\&=0, \end{aligned}$$
(148)

and (144) follows.

To conclude that (142) holds in the trace norm, define for n sufficiently large the quantum state

$$\begin{aligned} \Pi _n = (Q_n \otimes P^T_n) \Pi (Q_n \otimes P^T_n) \bigg / \mathrm {Tr}\left[ (Q_n \otimes P^T_n) \Pi (Q_n \otimes P^T_n)\right] , \end{aligned}$$
(149)

so that \(\lim _n \Pi _n = \Pi \) weakly, hence in the trace norm. By (144) this implies convergence in the trace norm also in (142). \(\square \)

Energy

We prove in this subsection some results that are needed to deal with the energy of quantum states with respect to unbounded operators.

Lemma 6

Let \({\mathcal {H}}_A\), \({\mathcal {H}}_B\) be Hilbert spaces and let A be a self-adjoint operator on \({\mathcal {H}}_A\). Then, there exists a sequence of bounded self-adjoint operators \(\{A_n\}_{n=0}^\infty \subset {\mathcal {B}}({\mathcal {H}})\) such that, for every for every quantum state \(\rho \in {\mathcal {S}}({\mathcal {H}}_A\otimes {\mathcal {H}}_B)\), \(E_{A_n \otimes {\mathbb {I}}_B}(\rho )\) increases towards \(E_{A \otimes {\mathbb {I}}_B}(\rho )\).

Proof

It is sufficient to consider the case of a pure state \(\rho = |\psi \rangle \langle \psi |\), because the general case follows by Remark 6 and the monotone convergence theorem for series.

Define by functional calculus [66, Theorem VIII.5] \(A_n = A \chi _{(-n, n)}(A)\), where \(\chi _{(-n,n)}(x) = 1\) if \(x \in (-n,n)\), \(\chi _{(-n,n)}(x) = 0\) otherwise. Let us argue without the Hilbert space \({\mathcal {H}}_B\) first (i.e., \({\mathcal {H}}_B = {\mathbb {C}}\)). Then,

$$\begin{aligned} E_{A_n}(\rho ) = \left\| A_n|\psi \rangle \right\| ^2 = \int _{-n}^n \lambda ^2 \mathrm {d} \langle \psi | P_\lambda | \psi \rangle , \end{aligned}$$
(150)

where \(P_\lambda = \chi _{(-\infty , \lambda ]}(A)\) denotes the resolution of the identity associated to A. The expression is increasing with respect to n and \(\sup _{n} \left\| A_n|\psi \rangle \right\| ^2 < \infty \) if and only if \(\psi \) belongs to the domain of A, because, defining \(|\psi _n\rangle = \chi _{(-n,n)}(A) |\psi \rangle \), the sequence \(\{ |\psi _n\rangle \}_{k=0}^\infty \subset {\mathcal {H}}\) converges towards \(|\psi \rangle \) with \(A |\psi _n\rangle \) bounded and A is a closed operator. In this case, we also have \(\lim _n A_n |\psi \rangle = A |\psi \rangle \) by [66, Theorem VIII.5, c)], hence the conclusion in this case. The thesis with the additional Hilbert space \({\mathcal {H}}_B\) follows from repeating the argument by noticing that

$$\begin{aligned} A_n \otimes {\mathbb {I}}_{B} = (A \otimes {\mathbb {I}}_B) \chi _{(-n,n)}(A \otimes {\mathbb {I}}_B). \end{aligned}$$
(151)

\(\square \)

The following result shows that \(E_A(\rho )\) does not depend on the ensemble that generates \(\rho \).

Proposition 9

If \(\rho = \sum _{k=0}^\infty |\phi _k\rangle \langle \phi _k|\) with \(\{|\phi _k\rangle \}_{k=0}^\infty \subset {\mathcal {H}}\), then

$$\begin{aligned} E_A(\rho ) = \sum _{k=0}^\infty \left\| A|\phi _k\rangle \right\| ^2, \end{aligned}$$
(152)

where we let \(\left\| A|\phi \rangle \right\| ^2 =\infty \) if \(| \phi \rangle \) does not belong to the domain of A.

Analogously, let \(\mu \) be a probability measure on \({\mathcal {H}}\), and let

$$\begin{aligned} \rho = \int _{\mathcal {H}}|\psi \rangle \langle \psi |\,\mathrm {d}\mu (\psi )\,. \end{aligned}$$
(153)

Then,

$$\begin{aligned} E_A(\rho ) = \int _{\mathcal {H}}\left\| A|\psi \rangle \right\| ^2\mathrm {d}\mu (\psi )\,. \end{aligned}$$
(154)

Proof

If we define \(|{{\hat{\phi }}}_k\rangle = |\phi _k\rangle / \Vert |\phi _k\rangle \Vert \), then the thesis can be rewritten as

$$\begin{aligned} E_A(\rho ) = \sum _{k=0}^\infty \Vert |\phi _k \rangle \Vert ^2 E_A(|\hat{\phi }_k \rangle \langle {{\hat{\phi }}}_k | ), \end{aligned}$$
(155)

hence, by Lemma 6 and the monotone convergence theorem for series, it is sufficient to prove the result for \(A \in {\mathcal {B}}({\mathcal {H}})\).

Arguing as in [34, Theorem 2.6] (noticing that the proof holds also in the infinite dimensional case), there exists a unitary map \(U: \ell ^2({\mathbb {N}}) \rightarrow \ell ^2({\mathbb {N}})\), \(U^\dagger U = {\mathbb {I}}_{\ell ({\mathbb {N}})}\), i.e., \((u_{ij})_{i,j=0}^\infty \) with \(\sum _{k=0}^\infty u_{ki}^* u_{kj} = \delta _{ij}\), such that

$$\begin{aligned} |\phi _k\rangle = \sum _{i=0}^\infty u_{ki} \sqrt{p_i} | \psi _i\rangle . \end{aligned}$$
(156)

Then,

$$\begin{aligned}&\sum _{k=0}^\infty \left\| A|\phi _k\rangle \right\| ^2 = \sum _{k=0}^\infty \langle \phi _k| A^2 | \phi _k\rangle = \sum _{k=0}^\infty \sum _{i,j=0}^\infty \sqrt{p_i p_j} u_{ki}^* u_{kj} \langle \psi _i| A^2 | \psi _j\rangle \nonumber \\&= \sum _{i,j=0}^\infty \sqrt{p_i p_j}\langle \psi _i| A^2 | \psi _j\rangle \left( \sum _{k=0}^\infty u_{ki}^* u_{kj}\right) = \sum _{i=0}^\infty p_i \langle \psi _i| A^2 | \psi _i\rangle = E_A(\rho ), \end{aligned}$$
(157)

and the claim (152) follows.

The integral version (154) of the claim can be proved along the same lines employing Beppo Levi’s monotone convergence theorem [67, Theorem 2.8.2] and Fubini’s theorem [67, Theorem 3.4.4]. \(\square \)

Proposition 10

\(E_{A}\) is lower semicontinuous, i.e., if \(\{\rho _n\}_{n=0}^\infty \subset {\mathcal {S}}({\mathcal {H}})\) converge towards \(\rho \in {\mathcal {S}}({\mathcal {H}})\), then \(E_A(\rho ) \le \liminf _n E_A(\rho _n)\).

Proof

If A is bounded then, by Remark 7, \(E_A(\rho ) = \mathrm {Tr}_{{\mathcal {H}}} \left[ A \, \rho \, A\right] \), which is continuous with respect to the trace norm. The general case follows by Lemma 6, since \(E_A(\rho ) = \sup _{n} E_{A_n}(\rho )\) and a pointwise supremum of continuous functions is lower semicontinuous. \(\square \)

Proposition 11

Let A, B be, respectively, self-adjoint operators on Hilbert spaces \({\mathcal {H}}_A\), \({\mathcal {H}}_B\) and let \(\Pi \in {\mathcal {S}}({\mathcal {H}}_A \otimes {\mathcal {H}}_B)\) with \(\rho = \mathrm {Tr}_{A}[\Pi ]\), \(\sigma = \mathrm {Tr}_B[\Pi ]\). Then,

$$\begin{aligned} E_{A \otimes {\mathbb {I}}_{B}} (\Pi ) = E_{A}(\sigma ), \quad E_{{\mathbb {I}}_A \otimes B} (\Pi ) = E_{B}(\sigma ). \end{aligned}$$
(158)

If both energies above are finite, then

$$\begin{aligned} E_{A \otimes {\mathbb {I}}_{B} + {\mathbb {I}}_A \otimes B} (\Pi ) + E_{A \otimes {\mathbb {I}}_{B} - {\mathbb {I}}_A \otimes B} (\Pi )= 2 E_{A}(\rho ) + 2 E_{B}(\sigma ). \end{aligned}$$
(159)

Proof

We prove the first identity in (158), the second one being similar. By Lemma 6, it is sufficient to argue when A is bounded. Then, by Remark 7,

$$\begin{aligned}&E_{A \otimes {\mathbb {I}}_B}(\Pi ) = \mathrm {Tr}_{AB} [ (A \otimes {\mathbb {I}}_B) \Pi (A \otimes {\mathbb {I}}_B)] \nonumber \\&\quad = \mathrm {Tr}_{A} [ A \mathrm {Tr}_B[ \Pi ] A ] = \mathrm {Tr}_{A}[A \sigma A] = E_{A}(\sigma ). \end{aligned}$$
(160)

To prove (159), by Remark 6, is it sufficient to consider the case of a pure state \(\Pi = |\psi \rangle \langle \psi |\), so that it reads

$$\begin{aligned}&\Vert \left( A \otimes {\mathbb {I}}_{B} + {\mathbb {I}}_A \otimes B \right) | \psi \rangle \Vert ^2 + \Vert \left( A \otimes {\mathbb {I}}_{B} - {\mathbb {I}}_A \otimes B \right) | \psi \rangle \Vert ^2\nonumber \\&= 2 \Vert \left( A \otimes {\mathbb {I}}_{B} \right) | \psi \rangle \Vert ^2 + 2 \Vert \left( {\mathbb {I}}_A \otimes B \right) | \psi \rangle \Vert ^2 \end{aligned}$$
(161)

assuming that both terms in the right-hand side are finite, i.e., \(|\psi \rangle \) belongs to the domain of \(A\otimes {\mathbb {I}}_B\) and \({\mathbb {I}}_A \otimes B\). But then

$$\begin{aligned} \left( A \otimes {\mathbb {I}}_{B} + {\mathbb {I}}_A \otimes B \right) | \psi \rangle = \left( A \otimes {\mathbb {I}}_{B} \right) | \psi \rangle + \left( {\mathbb {I}}_A \otimes B \right) | \psi \rangle , \end{aligned}$$
(162)
$$\begin{aligned} \left( A \otimes {\mathbb {I}}_{B} - {\mathbb {I}}_A \otimes B \right) | \psi \rangle = \left( A \otimes {\mathbb {I}}_{B} \right) | \psi \rangle - \left( {\mathbb {I}}_A \otimes B \right) | \psi \rangle , \end{aligned}$$
(163)

hence the thesis by straightforward computation. \(\square \)

Convergence of the Quantum Wasserstein Distance

As in Sect. 3, we fix quadratures \(\{R_1,\,\ldots ,\,R_N\}\), i.e., self-adjoint operators on \({\mathcal {H}}\). Then, the cost associated with a quantum plan \(\Pi \in {\mathcal {C}}(\rho , \sigma )\) (Definition 5) reads

$$\begin{aligned} C(\Pi ) = \sum _{i=1}^N E_{R_i\otimes {\mathbb {I}}_{{\mathcal {H}}^*} - {\mathbb {I}}_{{\mathcal {H}}}\otimes R_i^T}(\Pi ) \end{aligned}$$
(164)

and a quantum state \(\rho \in {\mathcal {S}}({\mathcal {H}})\) has finite energy (Definition 6) if

$$\begin{aligned} \sum _{i=1}^N E_{R_i}(\rho ) <\infty \,. \end{aligned}$$
(165)

We are in a position to give a proof of Proposition 3.

Proposition 3Let \(\rho ,\,\sigma \in {\mathcal {S}}({\mathcal {H}})\) have finite energy. Then, any plan \(\Pi \in {\mathcal {C}}(\rho ,\sigma )\) has finite cost.

Proof

For \(i=1, \, \ldots , N\), we apply Proposition 11 with \(A = R_i\), \(B = R_i^T\) so that

$$\begin{aligned}&C(\Pi ) = \sum _{i=1}^N E_{R_i\otimes {\mathbb {I}}_{{\mathcal {H}}^*} - {\mathbb {I}}_{{\mathcal {H}}}\otimes R_i^T}(\Pi ) \nonumber \\&\quad = \sum _{i=1}^N\left( 2 E_{R_i}(\rho ) + 2 E_{R_i}(\sigma ) - E_{R_i\otimes {\mathbb {I}}_{{\mathcal {H}}^*} - {\mathbb {I}}_{{\mathcal {H}}}\otimes R_i^T}(\Pi )\right) < \infty , \end{aligned}$$
(166)

where we also used that \(E_{R_i^T}(\rho ^T) = E_{R_i}(\rho )\). \(\square \)

Proposition 12

Let \(\rho \), \(\sigma \in {\mathcal {S}}({\mathcal {H}})\) be quantum states with finite energy and let \(\{\Pi _n\}_{n=0}^\infty \subset {\mathcal {S}}({\mathcal {H}}\otimes {\mathcal {H}}^*)\) be a sequence of quantum couplings \(\Pi _n \in {\mathcal {C}}(\rho _n, \sigma _n)\) converging towards \(\Pi \in {\mathcal {C}}(\rho , \sigma )\). Then, \(C(\Pi ) \le \liminf _{n} C(\Pi _n)\). If moreover \(\lim _{n}E_{R_i}(\rho _n) = E_{R_i}(\rho )\) and \(\lim _{n}E_{R_i}(\sigma _n) = E_{R_i}(\sigma )\) for \(i =1, \ldots , N\), then \(C(\Pi ) = \lim _n C(\Pi _n)\).

Proof

The first inequality follows from Proposition 10 applied to each term in (164). Assuming convergence of the energies of both marginals, it is sufficient to show that that \(C(\Pi ) \ge \limsup _n C(\Pi _n)\). To this aim we use (166) and again Proposition 10 to argue that

$$\begin{aligned} -E_{\left( R_i\otimes {\mathbb {I}}_{{\mathcal {H}}^*} + {\mathbb {I}}_{{\mathcal {H}}}\otimes R_i^T\right) }(\Pi _n) \ge \limsup _{n \rightarrow \infty } - E_{\left( R_i\otimes {\mathbb {I}}_{{\mathcal {H}}^*} + {\mathbb {I}}_{{\mathcal {H}}}\otimes R_i^T\right) }(\Pi _n). \end{aligned}$$
(167)

\(\square \)

Proposition 13

Let \(\rho \), \(\sigma \in {\mathcal {S}}({\mathcal {H}})\) be quantum states with finite energy. Then, there exists \(\Pi \in {\mathcal {C}}(\rho , \sigma )\) such that \(C(\Pi ) = D(\rho , \sigma )^2\).

Proof

Let \(\Pi _n \in {\mathcal {C}}(\rho , \sigma )\) be such that \(\lim _n C(\Pi _n) = D(\rho , \sigma )^2\). By Lemma 8 we can assume, up to extracting a sub-sequence, that \(\{\Pi _n\}_{n=0}^\infty \) converge towards \(\Pi \in {\mathcal {C}}(\rho , \sigma )\). By Proposition 12, \(D(\rho , \sigma )^2 \le C(\Pi ) \le \liminf _n C(\Pi _n) = D(\rho ,\sigma )^2\), hence \(\Pi \) is optimal. \(\square \)

Theorem 9

Let \(\rho \), \(\sigma \in {\mathcal {S}}({\mathcal {H}})\) be quantum states with finite energy.

  • If \(\{\rho _n\}_{n=0}^\infty \), \(\{ \sigma _n\}_{n=0}^\infty \subset {\mathcal {S}}({\mathcal {H}})\) have finite energy and converge respectively towards \(\rho \), \(\sigma \), then

    $$\begin{aligned} D(\rho , \sigma ) \le \liminf _{n\rightarrow \infty } D(\rho _n, \sigma _n)\,. \end{aligned}$$
    (168)
  • Let \(\{ P_n \}_{n=0}^\infty \), \(\{ Q_n\}_{n=0}^\infty \subset {\mathcal {B}}({\mathcal {H}})\) be such that \(0 \le P_n \le {\mathbb {I}}_{{\mathcal {H}}}\), \(0 \le Q_n \le {\mathbb {I}}_{{\mathcal {H}}}\), and \(\lim _n P_n\rho P_n = \rho \), \(\lim _{n} Q_n\sigma Q_n = \sigma \) in the trace norm. Define, for n sufficiently large,

    $$\begin{aligned} \rho _n = \frac{ P_n \rho P_n}{ \mathrm {Tr}[ P_n \rho P_n ]},\quad \sigma _n = \frac{ Q_n \sigma Q_n}{ \mathrm {Tr}[ Q_n \sigma Q_n]}, \end{aligned}$$
    (169)

    and assume that \(\lim _{n}E_{R_i}(\rho _n) = E_{R_i}(\rho )\), \(\lim _{n}E_{R_i}(\sigma _n) = E_{R_i}(\sigma )\) for \(i =1, \ldots , N\). Then,

    $$\begin{aligned} D(\rho , \sigma ) = \lim _{n\rightarrow \infty } D(\rho _n, \sigma _n)\,. \end{aligned}$$
    (170)

Proof

By Proposition 13, choose \(\Pi _n \in {\mathcal {C}}(\rho _n, \sigma _n)\) such that

$$\begin{aligned} C(\Pi _n) = D(\rho _n, \sigma _n)^2\,. \end{aligned}$$
(171)

By Lemma 8 and Proposition 12, we obtain \(\Pi \in {\mathcal {C}}(\rho , \sigma )\) such that \(C(\Pi ) \le \liminf _n C(\Pi _n)\), hence

$$\begin{aligned} D(\rho , \sigma )^2 \le C(\Pi ) \le \liminf _n D(\rho _n, \sigma _n)^2. \end{aligned}$$
(172)

To prove the second statement, let \(\Pi \in {\mathcal {C}}(\rho , \sigma )\) be such that \(C(\Pi ) = D(\rho , \sigma )^2\). Write

$$\begin{aligned} {\tilde{\Pi }}_n&= (Q_n \otimes P_n^T) \Pi (Q_n \otimes P_n^T),\nonumber \\ {\tilde{\rho }}_n^T&= \mathrm {Tr}_{{\mathcal {H}}}[{\tilde{\Pi }}_n] = P_n^T \mathrm {Tr}_{{\mathcal {H}}}[ (Q_n \otimes {\mathbb {I}}_{{\mathcal {H}}^*} ) \Pi (Q_n \otimes {\mathbb {I}}_{{\mathcal {H}}^*}) ] P_n^T,\nonumber \\ {\tilde{\sigma }}_n&= \mathrm {Tr}_{{\mathcal {H}}^*}[{\tilde{\Pi }}_n] = Q_n \mathrm {Tr}_{{\mathcal {H}}^*}[ ({\mathbb {I}}_{{\mathcal {H}}}\otimes P_n^T )\Pi ({\mathbb {I}}_{{\mathcal {H}}} \otimes P_n^T) ] Q_n,\nonumber \\ m_n&= \mathrm {Tr}_{{\mathcal {H}}\otimes {\mathcal {H}}^*} [{\tilde{\Pi }}_n] = \mathrm {Tr}_{{\mathcal {H}}^*}[{\tilde{\rho }}_n^T] = \mathrm {Tr}_{{\mathcal {H}}}[{\tilde{\sigma }}_n], \end{aligned}$$
(173)

and notice that \({\tilde{\rho }}_n^T \le P_n^T \rho ^T P_n^T = \rho _n^T\) and \({\tilde{\sigma }}_n \le Q_n \sigma Q_n = \sigma _n\). We define

$$\begin{aligned} \Pi _n = m_n {\tilde{\Pi }}_n + {\tilde{\sigma }}_n \otimes (\rho _n^T - {\tilde{\rho }}_n^T) + (\sigma _n - {\tilde{\sigma }}_n) \otimes {\tilde{\rho }}_n^T + (\sigma _n - {\tilde{\sigma }}_n) \otimes (\rho _n^T - {\tilde{\rho }}_n^T).\nonumber \\ \end{aligned}$$
(174)

It holds \(\Pi _n \ge 0\),

$$\begin{aligned} \mathrm {Tr}_{\mathcal {H}}[\Pi _n] = m_n {\tilde{\rho }}_n^T + m_n ( \rho _n^T - {\tilde{\rho }}_n^T) + (1-m_n) {\tilde{\rho }}_n^T + (1-m_n)(\rho _n^T - {\tilde{\rho }}_n^T) = \rho _n^T,\nonumber \\ \end{aligned}$$
(175)

and similarly \(\mathrm {Tr}_{\mathcal {H^*}}[\Pi _n] =\sigma _n\), so that \(\Pi _n \in {\mathcal {C}}(\rho _n, \sigma _n)\).

We claim that \(\lim _n \Pi _n = \Pi \). Since \(\lim _{n} P_n \rho P_n = \rho \) in the trace norm, \(\lim _n\mathrm {Tr}[P_n \rho P_n] = 1\), so \(\lim _n \rho _n =\rho \). Similarly, \(\lim _n \sigma _n = \sigma \). Lemma 5 gives \(\lim _n {\tilde{\Pi }}_n = \Pi \) in the trace norm and, by continuity of partial trace, \(\lim _n {\tilde{\rho }}_n = \rho \), \(\lim _n{\tilde{\sigma }}_n = \sigma \) and \(\lim _n m_n = 1\), hence the claim is proved.

By Proposition 12, because the energies of the marginals converge, it follows that \(C(\Pi ) = \lim _n C(\Pi _n)\). We conclude that

$$\begin{aligned} D(\rho , \sigma )^2 = C(\Pi ) \ge \limsup _{n\rightarrow \infty } D(\rho _n, \sigma _n)^2. \end{aligned}$$
(176)

\(\square \)

Remark 11

In Theorem 9, we may choose \(P_n = \sum _{i=0}^n |\psi _i \rangle \langle \psi _i|\) where \(\rho \) has the eigendecomposition \(\rho = \sum _{k=1}^\infty p_i |\psi _i \rangle \langle \psi _i|\), and similarly for \(Q_n\), by considering an eigendecomposition of \(\sigma \). Indeed, by Lemma 9 it follows that \(E_{R_i}(\rho _n)\) converge towards \(E_{R_i}(\rho )\), and similarly for \(\sigma \). We deduce that

$$\begin{aligned} \lim _{n\rightarrow \infty } D(\rho _n, \sigma _n) = D(\rho , \sigma )\,. \end{aligned}$$
(177)

Lemma 7

For any \(X\in {\mathcal {T}}_2({\mathcal {H}})\) and any self-adjoint operator R on \({\mathcal {H}}\) such that \(\left\| \left[ R,\,X\right] \right\| _2<\infty \), we have

$$\begin{aligned} \left\| \left[ R,\,X\right] \right\| _2^2&\ge \mathrm {Tr}_{{\mathcal {H}}}\left[ R\left( X^\dag \,X + X\,X^\dag \right) R - \sqrt{X^\dag \,X}\,R\,\sqrt{X^\dag \,X}\,R\right. \nonumber \\&\quad \left. - \sqrt{X\,X^\dag }\,R\,\sqrt{X\,X^\dag }\,R\right] \,. \end{aligned}$$
(178)

Proof

Let us consider the singular-value decomposition of X:

$$\begin{aligned} X = \sum _{i=0}^\infty x_i\,|\psi _i\rangle \langle \phi _i|\,,\qquad x_i\ge 0\,,\qquad \langle \psi _i|\psi _j\rangle = \langle \phi _i|\phi _j\rangle = \delta _{ij}\,, \end{aligned}$$
(179)

where the series converges in the Hilbert–Schmidt norm. We get

$$\begin{aligned}&\left\| \left[ R,\,X\right] \right\| _2^2 = \mathrm {Tr}_{{\mathcal {H}}}\left[ R\left( X^\dag \,X + X\,X^\dag \right) R - 2\,X^\dag \,R\,X\,R\right] \nonumber \\&\ge \mathrm {Tr}_{{\mathcal {H}}}\left[ R\left( X^\dag \,X + X\,X^\dag \right) R\right] - 2\left| \mathrm {Tr}_{{\mathcal {H}}}\left[ X^\dag \,R\,X\,R\right] \right| \nonumber \\&=\mathrm {Tr}_{{\mathcal {H}}}\left[ R\left( X^\dag \,X + X\,X^\dag \right) R\right] - 2\left| \sum _{i,\,j=0}^\infty x_i\,x_j\,\langle \psi _i|R|\psi _j\rangle \langle \phi _j|R|\phi _i\rangle \right| \nonumber \\&\ge \mathrm {Tr}_{{\mathcal {H}}}\left[ R\left( X^\dag \,X + X\,X^\dag \right) R\right] - \sum _{i,\,j=0}^\infty x_i\,x_j\left( \left| \langle \psi _i|R|\psi _j\rangle \right| ^2 + \left| \langle \phi _j|R|\phi _i\rangle \right| ^2\right) \nonumber \\&= \mathrm {Tr}_{{\mathcal {H}}}\left[ R\left( X^\dag \,X + X\,X^\dag \right) R - \sqrt{X^\dag \,X}\,R\,\sqrt{X^\dag \,X}\,R - \sqrt{X\,X^\dag }\,R\,\sqrt{X\,X^\dag }\,R\right] \,, \end{aligned}$$
(180)

and the claim follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Palma, G., Trevisan, D. Quantum Optimal Transport with Quantum Channels. Ann. Henri Poincaré 22, 3199–3234 (2021). https://doi.org/10.1007/s00023-021-01042-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01042-3

Navigation