Skip to main content
Log in

New floating/grounded FDNC and non-ideal grounded FDNR simulators based on VDTA

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The paper proposes a new grounded/floating frequency dependent negative conductance (FDNC) simulator, and a non-ideal frequency dependent negative resistance (FDNR) simulator, based on deployment of voltage differencing transconductance amplifiers (VDTA), along with two grounded capacitances. The presented simulators feature electronic controllability of realized negative conductance/resistance via DC bias current of VDTA, with no component matching constraints. The non-ideality analysis of the circuits is also presented. The proposed solutions exhibit an excellent behaviour under non-ideal conditions with low active/passive sensitivity. The working of the presented simulators has been verified by corresponding voltage mode filter design examples, and has been verified by HSPICE simulations which were carried out on the basis of 0.18 μm CMOS technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Referencess

  1. Bruton, L. (1969). Network transfer functions using the concept of frequency-dependent negative resistance. IEEE Transactions on Circuit Theory, 16(3), 406–408.

    Google Scholar 

  2. Antoniou, A. (1971). Bandpass transformations and realisations using the concept of frequency-dependent negative-resistance elements. IEEE Transactions on Circuit Theory, CT-18, 297–299.

  3. Bui, N., Hasler, M., & Huynh, L. (1978). On Antoiou’s method for bandpass filters with FDNR and FDNC elements. IEEE Transactions on Circuits and Systems, 25(3), 169–172.

    Google Scholar 

  4. Senani, R. (1983). On the synthesis of a class of immittances and filters using grounded capacitors. International Journal of Circuit Theory and Applications, 11(4), 410–415.

    Google Scholar 

  5. Senani, R. (1982). A class of single-element-controlled sinusoidal oscillators. Archiv. Fur Elektronik und Ubertrangungstechnik., 36(10), 405–408.

    Google Scholar 

  6. Soliman, A. M. (1979). A new realization of FDNC using DVCCS/DVCVS. AEU—International Journal of Electronics and Communications, 3, 423–424.

  7. Sedef, H., & Acar, C. (2000). A new floating FDNR circuit using differential voltage current conveyors. Frequenz, 54(5–6), 123–125.

    Google Scholar 

  8. Pal, K. (1981). Realization of ideal grounded inductances and frequency dependent negative resistances using current Conveyors and without matched components. International Journal of Circuit Theory and Application, 9(2), 242–245.

    Google Scholar 

  9. Senani, R., & Bhaskar, D. R. (1994). Versatile voltage controlled impedance configuration. IEE Proc.-Circuits Devices Syst., 141(5), 414–416.

  10. Abuelma’Atti, M.T., Tasadduq, N.A. . (1999). Electronically tunable capacitance multiplier and frequency-dependent negative-resistance simulator using the current-controlled current conveyor. Microelectronics Journal, 30(9), 869–873.

    Google Scholar 

  11. Pal, K. (2004). Floating inductance and FDNR using positive polarity current conveyors. Active and Paaive Electronic Component, 27, 81–83.

    Google Scholar 

  12. Nandi, R., Sanyal, S., & Bandyopadhyay, T. (2006). Low sensitivity multifunction active circuits using CFA-based supercapacitor. International Journal of Electronics, 93(10), 689–698.

    Google Scholar 

  13. Kacar, F., & Kuntman, H. (2009). On the realization of the FDNR simulators using only a single current feedback operational amplifier. In Proceedings of International Conference on Electr. Electronics Engineering-2009, pp. 223–226.

  14. Senani, R., Bhaskar, D. R., Gupta, S. S., & Singh, V. K. (2009). A configuration for realizing floating, linear, voltage controlled resistance, inductance and FDNC elements. International Journal of Circuit Theory and Application, 37, 709–719.

    Google Scholar 

  15. Psychalinos, C., Pal, K., & Vlassis, S. (2008). A floating generalized impedance converter with current feedback operational amplifiers. International Journal of Electronics and Communications (AEU), 62(2), 81–85.

    Google Scholar 

  16. Abuelmmatti, M. T., Dhar, S. K., & Khalifa, Z. J. (2017). New two-CFOA-based floating immittance simulators. Analog Integrated Circuits and Signal Processing, 91, 479–489.

    Google Scholar 

  17. Abuelma’atti, M.T., Dhar, S.K. . (2016). New CFOA-based floating immittance emulators. International Journal of Electronics. https://doi.org/10.1080/00207217.2016.1138544

    Article  Google Scholar 

  18. Kaçar, F., & Yeşil, A. (2012). FDCCII-based FDNR simulator topologies. International Journal of Electronics, 99(2), 285–293.

    Google Scholar 

  19. Senani, R. (1980). New tunable synthetic floating inductors. Electronics Letters, 16(10), 382–383.

    Google Scholar 

  20. Nandi, S. K., Jana, P. B., & Nandi, R. (1984). Novel Floating ideal tunable FDNR simulation using Current Conveyors. IEEE Transactions on Circuits and Systems, 31(4), 402–403.

    Google Scholar 

  21. Senani, R. (1984). Floating ideal FDNR using only two current conveyors. Electronics Letters., 20(5), 205–206.

    Google Scholar 

  22. Senani, R. (1986). On the realisation of floating active elements. IEEE Transactions on Circuits and Systems., 33(3), 323–324.

    Google Scholar 

  23. Nandi, S. K., Jana, P. B., & Nandi, R. (1983). Floating ideal FDNR using current conveyors. Electronics Letters, 19(7), 251.

    Google Scholar 

  24. Higashimura, M., & Fukui, Y. (1986). Novel lossless tunable floating FDNR simulation using two current conveyors and a buffer. Electronics Letters., 22(18), 938–939.

    Google Scholar 

  25. Higashimura, M., & Fukui, Y. (1987). New lossless tunable floating FDNR simulation using two current conveyors and an INIC. Electronics Letters., 23(10), 529–531.

    Google Scholar 

  26. Soliman, A. M., & Saad, R. A. (2010). Two new families of floating FDNR circuits. Journal of Electrical and Computer Engineering, Volume 2010, Article ID 563761, 7 pages.

  27. Gupta, P., & Srivastava, M. (2018). New Frequency Dependent Negative Conductance Simulator employing VDTAs and Grounded Capacitances. In Proceedings of 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, pp. 275–279.

  28. Tangsrirat, W., & Mongkolwai, P. (2014). VDTA-based floating FDNR simulator topology. KMITL-Science and Technology Journal, 13(1), 17–21.

    Google Scholar 

  29. Theingjit, S., Pukkalanun, T., & Tangsrirat, W. (2016). Grounded FDNC and FDNR realizations based on Gm-C technique and their applications to ladder filter design. Engineering Letters, 24(3), 263–267.

    Google Scholar 

  30. Gupta, A., Senani, R., Bhaskar, D. R., & Singh, A. K. (2012). OTRA-based grounded-FDNR and grounded-inductance simulators and their applications. Circuits, Systems, and Signal Processing, 31(2), 489–499.

    MathSciNet  Google Scholar 

  31. Nagar, B. C., & Paul, S. K. (2017). Lossless grounded FDNR simulator and its applications using OTRA. Analog Integrated Circuits and Signal Processing, 92, 507–517.

    Google Scholar 

  32. Kacar, F., Metin, B., & Kuntman, H. (2010). A new CMOS dual-X second generation current conveyor (DXCCII) with an FDNR circuit application. International Journal of Electronics and Communications (AEU), 64(8), 774–778.

    Google Scholar 

  33. Jantakun, A. (2015). A simple grounded FDNR and capacitance simulator based-on CCTA. AEU-International Journal of Electronics and Communications, 69(6), 950–957.

    Google Scholar 

  34. Mongkolwai, P., & Tangsrirat, W. (2016). Generalized impedance function simulator using voltage differencing buffered amplifiers (VDBAs). In Proceedings of the International Multiconference of Engineers and Computer Scientists (IMECS 2016), Vol. 2, Hong Kong, Mar. 2016, pp.1–4.

  35. Srivastava, M. (2017). New synthetic grounded FDNR with electronic controllability employing cascaded VDCCs and grounded passive elements. Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 9(4), 97–102.

  36. Mohammad, F., Jahariah, S., & Sawal Hamid, M. A. (2018). Grounded impedance simulator topologies employing minimum passive elements. International Journal of Engineering and Technology (UAE), 7(2), 1–5.

    Google Scholar 

  37. Munir, A. A., & Abuelma’atti, M.T. . (2019). A Novel Tunable Grounded Positive and Negative Impedance Multiplier. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(6), 924–927.

    Google Scholar 

  38. Munir, A. A., & Abulema’atti, M.T. . (2019). A Tunable Floating Impedance Multiplier. Arabian Journal for Science and Engineering, 44(8), 7085–7089.

    Google Scholar 

  39. Kumar, U. (1983). Novel switched capacitor realisations of floating FDNC. Microelectronics Journal, 14(5), 31–34.

    Google Scholar 

  40. Dikbaş, M. C., & Ayten, U. E. (2018). Voltage difference transresistance amplifier and its application: floating FDNR simulator circuit. International Journal of Electronics. https://doi.org/10.1080/00207217.2018.1477200

    Article  Google Scholar 

  41. Minaei, S., Yuce, O., & Cicekoglu, O. (2006). A versatile active circuit for realising floating inductance, capacitance, FDNR and admittance converter. Analog Integrated Circuits and Signal Processing, 47(2), 199–202.

    Google Scholar 

  42. Yuce, E. (2006). On the realization of the floating simulators using only grounded passive components. Analog Integrated Circuits and Signal Processing, 49(2), 161–166.

    Google Scholar 

  43. Yuce, E., & Minaei, S. (2008). A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters. IEEE Transactions on Circuits and Systems I-Regular Papers, 55(1), 254–263.

    MathSciNet  Google Scholar 

  44. Jantakun, A., Pisutthipong, N., & Siripruchyanun, M. (2009). A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs. ECTI-CON-2009: 6th international conference on electrical engineering/electronics,computer, telecommunications and information technology, Chon Buri, Thailand.

  45. Soliman, A. M. (2011). Generation of generalized impedance converter circuits using NAM expansion. Circuits Systems and Signal Processing, 30(5), 1091–1114.

    Google Scholar 

  46. Ayten, U. E., Sagbas, M., Herencsar, N., & Koton, J. (2012). Novel floating general element simulators using CBTA. Radioengineering, 21(1), 11–19.

    Google Scholar 

  47. Alpaslan, H. (2016). A modified VDVTA and its applications to floating simulators and aquadratureoscillator. Microelectronics Journal, 51, 1–14.

    Google Scholar 

  48. Biolek, D., Senani, R., Biolkova, V., & Kolka, Z. (2008). Active elements for analog signal processing; classification, review and new proposals. Radioengineering Journal, 17(4), 15–32.

    Google Scholar 

  49. Jetsdaporn, S., & Worapong, T. (2014). Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectronics Journal, 45, 613–618.

    Google Scholar 

  50. Arbel, A. F., & Goldminz, L. (1992). Output stage for current-mode feedback amplifiers, theory and applications. Analog Integrated Circuits and Signal Processing, 3, 243–255.

    Google Scholar 

  51. Petrović, P. B. (2018). Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Analog Integrated Circuits and Signal Processing, 96(3), 417–433.

    Google Scholar 

  52. Srivastava, M., Prasad, D., & Bhaskar, D. R. (2017). New electronically tunable grounded inductor simulator employing single vdta and one grounded capacitor. Journal of Engineering Science and Technology, 12(1), 113–126.

    Google Scholar 

  53. Alaybeyoglu, E., & Kuntman, H. (2016). CMOS implementations of VDTA based frequency agile filters for encrypted communications. Analog Integrated Circuits and Signal Processing, 89, 675–684.

    Google Scholar 

  54. GUM-Guide to the Expression of Uncertainty in Measurement, ISO 1993, 1993.

  55. Weste, N. H. E., & Harris, D. (2005). CMOS VLSI design: A circuits and systems perspective (3rd ed.). Addison-Wesley, pp. 231–235.

  56. Evaluation of measurement data—Supplement 1 to the “Guide to the expression of uncertainty in measurement”—Propagation of distributions using a Monte Carlo method, BIPM, 2008.

  57. Bonteanu, G. (2017). A current controlled CMOS current amplifier. 2017 5th International symposium on electrical and electronics engineering (iSEEE), pp. 1–4.

  58. Senani, R. (1986). Network transformation for active-RC realization of RLM-immittances. Frequenz, 40(3), 67–70.

    Google Scholar 

Download references

Acknowledgements

Research was supported by Ministry of Education, Science and Technological Development, Republic of Serbia, Grant Nos. 42009 and 172057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag B. Petrović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, P.B. New floating/grounded FDNC and non-ideal grounded FDNR simulators based on VDTA. Analog Integr Circ Sig Process 110, 259–277 (2022). https://doi.org/10.1007/s10470-021-01818-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-021-01818-x

Keywords

Navigation