Skip to main content
Log in

Design and application of a self-pumping microfluidic staggered herringbone mixer

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The rapid mixing of reagents is critical to a wide range of chemical and biological reactions but is difficult to implement in microfluidic devices, particularly in capillary action/passive pumping devices or in point-of-need environments. Here, we develop a self-pumping asymmetric staggered herringbone mixer made from only laser-ablated glass and tape. This lab-on-a-chip platform is capable of rapid flow (0.14 mL min−1, 1 cm s−1) and fast mixing (< 10 s) without external forces or pumps and is amenable to the flow of non-aqueous solvents. Furthermore, the degree of mixing and flow rates are easily tunable through the length and depth of the herringbone grooves, and the thickness of the double-sided tape that defines the channel height, respectively. The device utility is demonstrated for chemical and biological assays through the reaction of Ni(II) and DMG in ethanol/water and the enzymatic reaction of o-dianisidine with peroxidase, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altundemir S, Uguz A, Ulgen K (2017) A review on wax printed microfluidic paper-based devices for international health. Biomicrofluidics 11:041501

    Article  Google Scholar 

  • Bayareh M, Ashani MN, Usefian A (2020) Active and passive micromixers: a comprehensive review. Chem Eng Process 147:107771

    Article  Google Scholar 

  • Boehle KE, Doan E, Henry S, Beveridge JR, Pallickara SL, Henry CS (2018) Single board computing system for automated colorimetric analysis on low-cost analytical devices. Anal Methods 10:5282–5290

    Article  Google Scholar 

  • Cai G, Xue L, Zhang H, Lin J, Cai G, Xue L, Zhang H, Lin J (2017) A review on micromixers. Micromachines 8:274–274

    Article  Google Scholar 

  • Capretto L, Cheng W, Hill M and Zhang X (2011) Microfluidics. In: Lin, B. (ed), Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 27–68.

  • Cardoso TMG, De Souza FR, Garcia PT, Rabelo D, Henry CS, Coltro WKT (2017) Versatile fabrication of paper-based microfluidic devices with high chemical resistance using scholar glue and magnetic masks. Anal Chim Acta 974:63–68

    Article  Google Scholar 

  • Carrell C, Kava A, Nguyen M, Menger RF, Munshi Z, Call Z, Nussbaum M, Henry C (2019) Beyond the lateral flow assay: a review of paper-based microfluidics. Microelectron Eng 206:45–54

    Article  Google Scholar 

  • Cate DM, Noblitt SD, Volckens J, Henry CS (2015) Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip 15:2808–2818

    Article  Google Scholar 

  • Channon RB, Joseph MB, Bitziou E, Bristow AWT, Ray AD, Macpherson JV (2015) Electrochemical flow injection analysis of hydrazine in an excess of an active pharmaceutical ingredient: achieving pharmaceutical detection limits electrochemically. Anal Chem 87:10064–10071

    Article  Google Scholar 

  • Channon RB, Joseph MB, Macpherson JV (2016) Additive manufacturing for electrochemical (micro)fluidic platforms. Electrochem Soc Interface 25:63–68

    Article  Google Scholar 

  • Channon RB, Nguyen MP, Henry CS, Dandy DS (2019) Multilayered microfluidic paper-based devices: characterization, modeling, and perspectives. Anal Chem 91:8966–8972

    Article  Google Scholar 

  • Chen C, Zhao Y, Wang J, Zhu P, Tian Y, Xu M, Wang L, Huang X (2018) Passive Mixing inside. Microdroplets Micromachines 9:160

    Article  Google Scholar 

  • Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12:2118

    Article  Google Scholar 

  • Choudhary R, Bhakat T, Kumar Singh R, Ghubade A, Mandal S, Ghosh A, Rammohan A, Sharma A, Bhattacharya S (2011) Bilayer staggered herringbone micro-mixers with symmetric and asymmetric geometries. Microfluid Nanofluid 10:271–286

    Article  Google Scholar 

  • Denkhaus E, Salnikow K (2002) Nickel essentiality, toxicity, and carcinogenicity. Crit Rev Oncol Hemat 42:35–56

    Article  Google Scholar 

  • Feeny RM, Puissant NL, Henry CS (2016) Degassed PDMS pump for controlled extraction from dried filter samples in microfluidic devices. Anal Methods 8:8243–8370

    Article  Google Scholar 

  • Feng X, Ren Y, Hou L, Tao Y, Jiang T, Li W, Jiang H (2019) Tri-fluid mixing in a microchannel for nanoparticle synthesis. Lab Chip 19:2936–2946

    Article  Google Scholar 

  • Gervais L, Hitzbleck M, Delamarche E (2011) Capillary-driven multiparametric microfluidic chips for one-step immunoassays. Biosens Bioelectron 27:64–70

    Article  Google Scholar 

  • Glavan AC, Martinez RV, Maxwell EJ, Subramaniam AB, Nunes RMD, Soh S, Whitesides GM (2013) Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab Chip 13:2922

    Article  Google Scholar 

  • Hama B, Mahajan G, Fodor PS, Kaufman M, Kothapalli CR (2018) Evolution of mixing in a microfluidic reverse-staggered herringbone micromixer. Microfluid Nanofluid 22:1–14

    Article  Google Scholar 

  • Hempen C, Karst U (2006) Labeling strategies for bioassays. Anal Bioanal Chem 384:572–583

    Article  Google Scholar 

  • Hossain S, Husain A, Kim K-Y (2010) Shape optimization of a micromixer with staggered-herringbone grooves patterned on opposite walls. Chem Eng J 162:730–737

    Article  Google Scholar 

  • Hossain S, Husain A, Kim KY (2011) Optimization of micromixer with staggered herringbone grooves on top and bottom walls. Eng Appl Comp Fluid Mech 5:506–516

    Google Scholar 

  • Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:016505

    Article  Google Scholar 

  • Illa X, Ordeig O, Snakenborg D, Romano-Rodríguez A, Compton RG, Kutter JP (2010) A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry. Lab Chip 10:1254

    Article  Google Scholar 

  • Jeong GS, Chung S, Kim C-B, Lee S-H (2010) Applications of micromixing technology. Analyst 135:460

    Article  Google Scholar 

  • Lago S, Nadai M, Rossetto M, Richter SN (2018) Surface plasmon resonance kinetic analysis of the interaction between G-quadruplex nucleic acids and an anti-G-quadruplex monoclonal antibody. Biochim Biophys Act Gen Subj 1862:1276–1282

    Article  Google Scholar 

  • Lee JN, Park C, Whitesides GM (2003) Solvent compatibility of Poly(dimethylsiloxane)-based microfluidic devices. Anal Chem 75:6544–6554

    Article  Google Scholar 

  • Lillehoj PB, Wei F, Ho C-M (2010) A self-pumping lab-on-a-chip for rapid detection of botulinum toxin. Lab Chip 10:2265

    Article  Google Scholar 

  • Lin D, He F, Liao Y, Lin J, Liu C, Song J, Cheng Y (2013) Three-dimensional staggered herringbone mixer fabricated by femtosecond laser direct writing. J Opt 15:025601–025601

    Article  Google Scholar 

  • Liu B, Wu T, Yang X, Wang Z, Du Y (2014) Portable microfluidic chip based surface-enhanced raman spectroscopy sensor for crystal violet. Anal Lett 47:2682–2690

    Article  Google Scholar 

  • Lynn NS, Henry CS, Dandy DS (2008) Microfluidic mixing via transverse electrokinetic effects in a planar microchannel. Microfluid Nanofluid 5:493–505

    Article  Google Scholar 

  • Mentele MM, Cunningham J, Koehler K, Volckens J, Henry CS (2012) Microfluidic paper-based analytical device for particulate metals. Anal Chem 84:4474–4480

    Article  Google Scholar 

  • Movafaghi S, Cackovic MD, Wang W, Vahabi H, Pendurthi A, Henry CS, Kota AK (2019) Superomniphobic papers for on-paper pH sensors. Adv Mater Interfaces 6:1900232

    Article  Google Scholar 

  • Nahavandi S, Baratchi S, Soffe R, Tang S-Y, Nahavandi S, Mitchell A, Khoshmanesh K (2014) Microfluidic platforms for biomarker analysis. Lab Chip 14:1496–1514

    Article  Google Scholar 

  • Park J, Park J-K (2019) Integrated microfluidic pumps and valves operated by finger actuation. Lab Chip 19:5

    Article  Google Scholar 

  • Park SH, Maruniak A, Kim J, Yi G-R, Lim SH (2016) Disposable microfluidic sensor arrays for discrimination of antioxidants. Talanta 153:163–169

    Article  Google Scholar 

  • Regnault C, Dheeman D, Hochstetter A (2018) Microfluidic Devices for Drug Assays. High-Throughput 7:18

    Article  Google Scholar 

  • Renckens TJA, Janeliunas D, Van Vliet H, Van Esch JH, Mul G, Kreutzer MT (2011) Micromolding of solvent resistant microfluidic devices. Lab Chip 11:2035

    Article  Google Scholar 

  • Seong GH, Crooks RM (2002) Efficient mixing and reactions within microfluidic channels using microbead-supported catalysts. J Am Chem Soc 124:13360–13361

    Article  Google Scholar 

  • Shanko E-S, Van De Burgt Y, Anderson PD, Den Toonder JMJ (2019) Microfluidic magnetic mixing at low reynolds numbers and in stagnant fluids. Micromachines 10:731

    Article  Google Scholar 

  • Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  Google Scholar 

  • Stroock AD, McGraw GJ (2004) Investigation of the staggered herringbone mixer with a simple analytical model. Phil Trans R Soc Lond A 362:971–986

    Article  Google Scholar 

  • Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651

    Article  Google Scholar 

  • Taher AJ, Benjamin FP, Lagae L (2017) A valveless capillary mixing system using a novel approach for passive flow control. Microfluid Nanofluid 21:10

    Article  Google Scholar 

  • Ugarova NN, Lebedeva OV, Berezin IV (1981) Horseradish peroxidase catalysis I. Steady-state kinetics of peroxidase-catalyzed individual and co-oxidation of potassium ferrocyanide and o-dianisidine by hydrogen peroxide. J Mol Catal 13:215–225

    Article  Google Scholar 

  • Vahabi H, Wang W, Davies S, Mabry JM, Kota AK (2017) Coalescence-induced self-propulsion of droplets on superomniphobic surfaces. ACS Appl Mater 9:29328–29336

    Article  Google Scholar 

  • Vahabi H, Wang W, Mabry JM, Kota AK (2018) Coalescence-induced jumping of droplets on superomniphobic surfaces with macrotexture. Sci Adv 4:3488

    Article  Google Scholar 

  • Wang S, Thomas A, Lee E, Yang S, Cheng X, Liu Y (2016) Highly efficient and selective isolation of rare tumor cells using a microfluidic chip with wavy-herringbone micro-patterned surfaces. Analyst 141:2228–2237

    Article  Google Scholar 

  • Wang J, Zhang N, Chen J, Rodgers VGJ, Brisk P, Grover WH (2019a) Finding the optimal design of a passive microfluidic mixer. Lab Chip 19:3618–3627

    Article  Google Scholar 

  • Wang W, Du X, Vahabi H, Zhao S, Yin Y, Kota AK, Tong T (2019b) Trade-off in membrane distillation with monolithic omniphobic membranes. Nat Comm 10:1–9

    Google Scholar 

  • Wang W, Vahabi H, Movafaghi S, Kota AK (2019c) Superomniphobic surfaces with improved mechanical durability: synergy of hierarchical texture and mechanical interlocking. Adv Mater Interfaces 6:1900538

    Article  Google Scholar 

  • Ward K, Fan ZH (2015) Mixing in microfluidic devices and enhancement methods. J Micromech Microeng 25:094001

    Article  Google Scholar 

  • Williams MS, Longmuir KJ, Paul Y (2008) A practice guide to the staggered herringbone mixer. Lab Chip 8:1121–1129

    Article  Google Scholar 

  • Zhang X, Xia K, Ji A (2020) A portable plug-and-play syringe pump using passive valves for microfluidic applications. Sens Actuators B Chem 304:127331

    Article  Google Scholar 

Download references

Acknowledgements

A.K.K. acknowledges financial support under award 1751628 from the National Science Foundation and under awards R01HL135505 and R21HL139208 from the National Institutes of Health. C.S.H. acknowledges support under R33ES024719. Additional support was provided by Colorado State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arun K. Kota or Charles S. Henry.

Ethics declarations

Conflict of interest

The authors have no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4514 KB)

Supplementary file2 (MP4 685 KB)

Supplementary file3 (MP4 462 KB)

Supplementary file4 (MP4 482 KB)

Supplementary file5 (MP4 747 KB)

Supplementary file6 (MP4 488 KB)

Supplementary file7 (MP4 817 KB)

Supplementary file8 (MP4 721 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Channon, R.B., Menger, R.F., Wang, W. et al. Design and application of a self-pumping microfluidic staggered herringbone mixer. Microfluid Nanofluid 25, 31 (2021). https://doi.org/10.1007/s10404-021-02426-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-021-02426-x

Keywords

Navigation