Skip to main content
Log in

Solid-State Reaction and Diffusion Behaviors of CaFe2O4 and TiO2 at 1373 K to 1473 K

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The solid-state reaction and diffusion behaviors of CaFe2O4 and TiO2 were investigated using a diffusion couple method at 1373 K to 1473 K under air atmosphere, and an in situ XRD method was used to analyze the solid-state reaction process. The reactions between calcium ferrite and TiO2 in the solid state are displacement reactions that produce perovskite and Fe2O3. The diffusion interface was divided into three layers based on phase analysis: layer I was composed of CaTiO3; layer II was composed of Fe2O3, CaTiO3, CaFe2O4, and Ca2Fe2O5; and layer III was composed of CaTiO3, Fe2O3, CaFe2O3, and CaFe4O7. The interface was formed in three stages. In stage I, CaTiO3 formed at the interface. In stage II, the gradual thickening of layers I and II was accompanied by the growth of the amount of CaTiO3 phase. In stage III, CF decomposed into CF2, and layer III formed. Micropores were formed in layer II due to the Kirkendall effect, and the diffusion rate of Ca2+ in CaFe2O4 was greater than that in CaTiO3. The squared thickness of layer I was found to depend linearly on time, and the expression for predicting the thickness of layer I was proposed:

$$ \Delta x = ( 1. 1 7 3 1\times 10^{ - 18} T^{2} - 3.0206 \times 10^{ - 15} T + 1.9652 \times 10^{ - 12} )^{{\frac{1}{2}}} \cdot t^{{\frac{1}{2}}} $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Geological Survey U. Mineral Commodity Summaries, 2020, pp. 176-77.

  2. H. G. Du. Principle of Smelting Vanadium-titanium Magnetite in the Blast Furnace. Beijing: Science, 1996.

    Google Scholar 

  3. D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca,L. F. Verdeja: Miner. process extr. m. 2017, vol. 38, pp. 215-27.

    Article  Google Scholar 

  4. P. R. Dawson, J. Ostwald, K.M. Hayes: T. I. Min. Metall. C, 1985, vol. 94, pp. 71-8.

    CAS  Google Scholar 

  5. I. Shigaki, M. Sawada, N. Gennai: T. Iron Steel I. Japan, 1986, vol. 26, pp. 503-11.

    Article  CAS  Google Scholar 

  6. C. E. Loo, K. T. Wan, V. R. Howes: Ironmaking Steelmaking, 1988, vol. 15, pp. 279-85.

    Google Scholar 

  7. Boyuan Cai, Takashi Watanabe, Chikashi Kamijo, Masahiro Susa, Miyuki Hayashi: ISIJ. Int., 2018, vol. 58, pp. 642-51.

    Article  CAS  Google Scholar 

  8. Y. Hida, M. Sasaki, K. Sato, M. Kagawa, T. Miyazaki, H. Soma, H. Naito, M. Taniguchi: Nippon Steel Tech. Rep., 1987, vol. 35, pp. 59-67.

    Google Scholar 

  9. Y. Hida, J. Okazaki, K. Itoh, and M. Sasaki: Tetsu-to-Hagané, 1987, vol. 73, pp. 1893–1900.

  10. M. Sasaki and Y. Hida: Tetsu-to-Hagané, 1982, vol. 68, pp. 563–71.

  11. L. H. Hsieh, J.A. Whiteman: ISIJ Int., 1989, vol. 29, pp. 625-34.

    Article  CAS  Google Scholar 

  12. N. V. Y. Scarlett, M. I. Pownceby, I. C. Madsen, A.N. Christensen: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 929-36.

    Article  CAS  Google Scholar 

  13. N. V. Y. Scarlett, I. C. Madsen, M.I. Pownceby, A.N. Christensen: J. Appl. Crystallogr., 2004, vol. 37, pp. 362-68.

    Article  CAS  Google Scholar 

  14. N. A. S. Webster, M. I. Pownceby, I. C. Madsen, J. A. Kimpton: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1344-57.

    Article  Google Scholar 

  15. N. J. Bristow, C.E. Loo: ISIJ Int., 1992, vol. 32, pp. 819-28.

    Article  CAS  Google Scholar 

  16. A. D. Manshadi, J. Manuel, S. Hapugoda, N. Ware: ISIJ Int., 2014, vol. 45, pp. 2189-95.

    Article  Google Scholar 

  17. T. Pannanen, K. Kinnunen: Steel Res. Int., 2009, vol. 80, pp. 408-14.

    Google Scholar 

  18. H. P. Pimenta, V. Seshadri: Ironmak. Steelmak., 2002, vol. 29, pp. 175-79.

    Article  CAS  Google Scholar 

  19. M. Zhou, S. T. Yang, T. Jiang, X.X. Xue: Ironmak. Steelmak., 2015, vol. 42, pp. 217-25.

    Article  CAS  Google Scholar 

  20. W. S. Wang, G. Ren, Y. Q. Sun, Q. Lv: Iron Steel., 2010, vol. 45, pp. 13-17.

    Article  CAS  Google Scholar 

  21. E. Park, O. Ostrovski: ISIJ Int., 2004, vol. 44, pp. 74-81.

    Article  CAS  Google Scholar 

  22. M. Zhou, S. T. Yang, T. Jiang, and X.X. Xue: JOM, 2015, vol. 67, pp. 1203-13.

    Article  CAS  Google Scholar 

  23. S. Ren, J. L. Zhang, X. D. Xing, B. X. Su, Z. Wang, B. J. Yan: Ironmak. Steelmak., 2014, vol. 41, pp. 500-06.

    Article  CAS  Google Scholar 

  24. M. Suzuki, T. Tanaka: ISIJ Int., 2010, vol. 59, pp. 509-14.

    Article  Google Scholar 

  25. C. Y. Ding, X. W. Lv, Y. Chen, G. Li, W. C. He. X. M. Lv: J. Alloy Compd., 2019, 789. pp. 537-46.

    Article  CAS  Google Scholar 

  26. M. R. Yang, X. W. Lv, R. R. Wei, C. G. Bai. : Metall. Mater. Trans. B, 2018, vol. 49B, pp. 2667-80.

    Article  Google Scholar 

  27. H. Fukuyama, Md. Khalid Hossain, and K. Nagata: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 257–64.

  28. K. Nagata, K. Sato, K. S. Goto.: Metall. Trans. B, 1980, vol. 11B, pp. 455-61.

    Article  CAS  Google Scholar 

  29. L. Gao, L. Zhou, C. S. Li, J. Q. Feng, Y. F. Lu: J Mater Sci, 2013, vol. 48. pp. 974-977.

    Article  CAS  Google Scholar 

  30. K. G. Shi, K .C. Zhou, L. Zhang, Z. Y. Li.: J. Cent. South Univ. 2012, vol. 19, pp. 2411-15.

    Article  CAS  Google Scholar 

  31. K. T. Jacob, Sapna Gupta: Bull. Mater. Sci., 2009, vol. 32, pp. 611-16.

    Article  CAS  Google Scholar 

  32. V. Daněk, I. Nerád: Chem. Pap. 2002, vol. 56, pp. 241-46.

    Google Scholar 

  33. R. M. Vezikova and V. M. Gropyanov: Refractories, 1993, vol. 34, pp. 87-90.

    Article  Google Scholar 

  34. S. Forsberg, P. Wikström & E. Rosén: Metall. Trans. B, 2002, vol. 33B, pp. 385-92.

    Article  CAS  Google Scholar 

  35. B. F. Decker, J. S. Kasper: Acta Cryst. 1957, vol. 10, pp. 332-34.

    Article  CAS  Google Scholar 

  36. A. D. Smigelskas and E. O. Kirkendall: Trans. AIME, vol. 171, 1947, pp. 130.

    Google Scholar 

  37. A. Paul, T. Laurila, V. Vuorinen, and S.V. Divinski: Thermodynamics, Diffusion and the Kirkendall Effect in Solids, Springer, Cham.

  38. John D. Whittenberger: Metall. Trans., 1972, vol. 3, 3038-40.

    Article  CAS  Google Scholar 

  39. Isao Sakaguchi, Hajime Haneda: J. Solid State Chem. 1996, 124, pp. 195-97.

    Article  CAS  Google Scholar 

  40. M. Ceh, D. Kolar: J. Mater. Sci., 1989, vol. 24, pp. 4307-10.

    Article  CAS  Google Scholar 

  41. Patricia M. Hillm, H. S. Peiser, J. R. Pait. Acta Crystallogr. 1956, 9. pp. 981-86.

    Article  Google Scholar 

  42. Roushown Ali, Masatomo Yashima. J. Solid State Chem. 2005, 178, 2867-72.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Fund of Natural Science (No. 51974048), Chongqing Outstanding Youth Project (No. cstc2019jcyjjqX0024), Chongqing Postdoctoral Innovation Program (CQBX201904), as well as the Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyi Xiang or Xuewei Lv.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 3, 2020; accepted February 6, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, M., Xiang, J., Bai, C. et al. Solid-State Reaction and Diffusion Behaviors of CaFe2O4 and TiO2 at 1373 K to 1473 K. Metall Mater Trans B 52, 1436–1449 (2021). https://doi.org/10.1007/s11663-021-02111-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-021-02111-y

Navigation