Skip to main content
Log in

Continuous Spherical Gabor Transform for Gelfand Pair

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Using the basic properties of the Gelfand pairs and its spherical Fourier transform, we introduce the spherical Gabor transform. We show its fundamental properties, such as Plancherel, Parseval and inversion formula. Finally, we establish a number of uncertainty principles (such as Donoho–Stark’s uncertainty principle , Lieb inequality and Beckner’s uncertainty principle ) associated with this transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bansal, A., Kumar, A.: Heisenberg uncertainty inequality for Gabor transform. J. Math. Inequal. 10(3), 737–749 (2016)

    Article  MathSciNet  Google Scholar 

  2. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49(3), 906–931 (1989)

    Article  MathSciNet  Google Scholar 

  3. Eymard, P.: Analyse harmonique euclidienne. Les cours du CIMPA 6000, 1–144 (1980)

    Google Scholar 

  4. Farashahi, A.G., Kamyabi-Gol, R., et al.: Continuous Gabor transform for a class of non-Abelian groups. Bull. Belg. Math. Soc. Simon Stevin 19(4), 683–701 (2012)

    Article  MathSciNet  Google Scholar 

  5. Faraut, J.: Analyse harmonique sur les paires de guelfand et les espaces hyperboliques. Anal. Harmon. 315–446 (1982)

  6. Faraut, J., Harzallah, K.: Deux cours d’analyse harmonique, ecole d’d’analyse harmonique de tunis, 1984. Birkhäuser, auser Boston (1987)

  7. Faraut, J., Wakayama, M.: Invariant differential operators on the Heisenberg group and Meixner-Pollaczek polynomials. Adv. Pure Appl. Math. 4(1), 41–66 (2013)

    Article  MathSciNet  Google Scholar 

  8. Feichtinger, H.G., Strohmer, T.: Advances in Gabor Analysis. Springer, New York (2012)

  9. Gabor, D.: Theory of communication part. 1: The analysis of information. J. Inst. Electr. Eng. Part III Radio Commun. Eng. 93(26), 429–441 (1946)

    Google Scholar 

  10. Gröchenig, K.: Foundations of Time-frequency Analysis. Springer, New York (2013)

  11. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, New York (2014)

    MATH  Google Scholar 

  12. Saal, L.: Gelfand pairs related to groups of Heisenberg type. Rev. Un. Mat. Argentina 50, 2 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Sharma, J., Kumar, A.: Qualitative uncertainty principle for the Gabor transform on certain locally compact groups. Adv. Pure Appl. Math. 9(3), 205–220 (2018)

    Article  MathSciNet  Google Scholar 

  14. Wolf, J.A.: The uncertainty principle for Gelfand pairs. Nova J. Algebra Geom. 1(4), 383–396 (1992)

    MathSciNet  MATH  Google Scholar 

  15. Wolf, J.A.: Harmonic Analysis on Commutative Spaces, vol. 142. American Mathematical Society, New York(2007)

Download references

Acknowledgements

The authors are grateful to the referees for carefully reading the paper and for elaborate and valuable suggestions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moussa Faress.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faress, M., Fahlaoui, S. Continuous Spherical Gabor Transform for Gelfand Pair. Mediterr. J. Math. 18, 83 (2021). https://doi.org/10.1007/s00009-021-01710-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01710-y

Keywords

Mathematics Subject Classification

Navigation