Skip to main content
Log in

Fast Sparse Grid Simulations of Fifth Order WENO Scheme for High Dimensional Hyperbolic PDEs

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The weighted essentially non-oscillatory (WENO) schemes, especially the fifth order WENO schemes, are a popular class of high order accurate numerical methods for solving hyperbolic partial differential equations (PDEs). However when the spatial dimensions are high, the number of spatial grid points increases significantly. It leads to large amount of operations and computational costs in the numerical simulations by using nonlinear high order accuracy WENO schemes such as a fifth order WENO scheme. How to achieve fast simulations by high order WENO methods for high spatial dimension hyperbolic PDEs is a challenging and important question. In the literature, sparse-grid technique has been developed as a very efficient approximation tool for high dimensional problems. In a recent work [Lu, Chen and Zhang, Pure and Applied Mathematics Quarterly, 14 (2018) 57-86], a third order finite difference WENO method with sparse-grid combination technique was designed to solve multidimensional hyperbolic equations including both linear advection equations and nonlinear Burgers’ equations. Numerical experiments showed that WENO computations on sparse grids achieved comparable third order accuracy in smooth regions of the solutions and nonlinear stability as that for computations on regular single grids. In application problems, higher than third order WENO schemes are often preferred in order to efficiently resolve the complex solution structures. In this paper, we extend the approach to higher order WENO simulations specifically the fifth order WENO scheme. A fifth order WENO interpolation is applied in the prolongation part of the sparse-grid combination technique to deal with discontinuous solutions. Benchmark problems are first solved to show that significant CPU times are saved while both fifth order accuracy and stability of the WENO scheme are preserved for simulations on sparse grids. The fifth order sparse grid WENO method is then applied to kinetic problems modeled by high dimensional Vlasov based PDEs to further demonstrate large savings of computational costs by comparing with simulations on regular single grids. Several open problems are discussed at last.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Aràndiga, F., Martí, M.C., Mulet, P.: Weights design for maximal order WENO schemes. J. Sci. Comput. 60, 641–659 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Califano, F., Pegoraro, F., Bulanov, S.V., Mangeney, A.: Kinetic saturation of the Weibel instability in a collisionless plasma. Phys. Rev. E 57, 7048–7059 (1998)

    Google Scholar 

  4. Carrillo, J.A., Gamba, I.M., Majorana, A., Shu, C.-W.: A WENO-solver for the transients of Boltzmann-Poisson system for semiconductor devices. Performance and comparisons with Monte Carlo methods. J. Comput. Phys. 184, 498–525 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Carrillo, J.A., Vecil, F.: Nonoscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29, 1179–1206 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Castro, M., Costa, B., Don, W.S.: High order weighted essentially non-oscillatory WENO-Z schemes for hyperbolic conservation laws. J. Comput. Phys. 230, 1766–1792 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Chen, S., Zhang, Y.-T.: Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: application to discontinuous Galerkin methods. J. Comput. Phys. 230, 4336–4352 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Cheng, Y., Gamba, I.M., Proft, J.: Positivity-preserving discontinuous Galerkin schemes for linear Vlasov-Boltzmann transport equations. Math. Comp. 81, 153–190 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Dumbser, M., Käser, M., Titarev, V.A., Toro, E.F.: Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J. Comput. Phys. 226, 204–243 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid problems. In: Beauwens, R., de Groen, P. (eds.) Iterative Methods in Linear Algebra, pp. 263–281. North-Holland, Amsterdam (1992)

    Google Scholar 

  12. Guo, W., Cheng, Y.: A sparse grid discontinuous Galerkin method for high-dimensional transport equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38(6), A3381–A3409 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Hao, W., Hauenstein, J.D., Shu, C.-W., Sommese, A.J., Xu, Z., Zhang, Y.-T.: A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws. J. Comput. Phys. 250, 332–346 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Henrick, A., Aslam, T., Powers, J.: Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005)

    MATH  Google Scholar 

  15. Hu, C., Shu, C.-W.: Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97–127 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations. J. Comput. Phys. 253, 368–388 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Jiang, T., Zhang, Y.-T.: Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations. J. Comput. Phys. 311, 22–44 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Kurganov, A., Petrova, G., Popov, B.: Adaptive semidiscrete central-upwind schemes for nonconvex hyperbolic conservation laws. SIAM J. Sci. Comput. 29, 2381–2401 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-dependent advection problems. Appl. Numer. Math. 38, 377–401 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Lastdrager, B., Koren, B., Verwer, J.: Solution of time-dependent advection-diffusion problems with the sparse-grid combination technique and a rosenbrock solver. Comput. Methods Appl. Math. 1, 86–99 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Levy, D., Nayak, S., Shu, C.-W., Zhang, Y.-T.: Central WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 28, 2229–2247 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Levy, D., Puppo, G., Russo, G.: Central WENO schemes for hyperbolic systems of conservation laws. M2AN. Math. Model. Numer. Anal. 33, 547–571 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Liu, Y.-Y., Shu, C.-W., Zhang, M.-P.: On the positivity of linear weights in WENO approximations. Acta Mathematicae Applicatae Sinica, English Series 25, 503–538 (2009)

    MathSciNet  MATH  Google Scholar 

  26. Liu, Y., Cheng, Y., Chen, S., Zhang, Y.-T.: Krylov implicit integration factor discontinuous Galerkin methods on sparse grids for high dimensional reaction-diffusion equations. J. Comput. Phys. 388, 90–102 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Zhang, Y.-T.: A robust reconstruction for unstructured WENO schemes. J. Sci. Comput. 54, 603–621 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Lu, D., Zhang, Y.-T.: Krylov integration factor method on sparse grids for high spatial dimension convection-diffusion equations. J. Sci. Comput. 69, 736–763 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Lu, D., Zhang, Y.-T.: Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection-diffusion problems. J. Sci. Comput. 73, 980–1027 (2017). https://doi.org/10.1007/s10915-017-0398-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, D., Chen, S., Zhang, Y.-T.: Third order WENO scheme on sparse grids for hyperbolic equations. Pure Appl. Math. Q. 14, 57–86 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Pflaum, C., Zhou, A.: Error analysis of the combination technique. Numer. Math. 84, 327–350 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Qiu, J.-M., Christlieb, A.: A conservative high order semi-Lagrangian WENO method for the Vlasov equation. J. Comput. Phys. 229, 1130–1149 (2010)

    MathSciNet  MATH  Google Scholar 

  33. Reisinger, C.: Analysis of linear difference schemes in the sparse grid combination technique. IMA J. Numer. Anal. 33, 544–581 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Shi, J., Zhang, Y.-T., Shu, C.-W.: Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 186, 690–696 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Shu, C.W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Cockburn, B., Johnson, C., Shu, C.W., Tadmor, E., Quarteroni, A. (eds.) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics. Springer, Berlin (1998)

    Google Scholar 

  36. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51, 82–126 (2009)

    MathSciNet  MATH  Google Scholar 

  37. Shu, C.-W.: Bound-preserving high order schemes for hyperbolic equations: survey and recent developments. In: Klingenberg, C., Westdickenberg, M. (eds.) Theory, Numerics and Applications of Hyperbolic Problems II, Springer Proceedings in Mathematics & Statistics, pp. 591–603. Springer, Berlin (2018)

    Google Scholar 

  38. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    MathSciNet  MATH  Google Scholar 

  39. Tao, Z., Guo, W., Cheng, Y.: Sparse grid discontinuous Galerkin methods for the Vlasov-Maxwell system. J. Comput. Phys.: X 3, 100022 (2019)

    MathSciNet  Google Scholar 

  40. Taylor, E.M., Wu, M.W., Martin, M.P.: Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence. J. Comput. Phys. 223, 384–397 (2007)

    MATH  Google Scholar 

  41. Wu, L., Zhang, Y.-T., Zhang, S., Shu, C.-W.: High order fixed-point sweeping WENO methods for steady state of hyperbolic conservation laws and its convergence study. Commun. Comput. Phys. 20, 835–869 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Xiong, T., Zhang, M., Zhang, Y.-T., Shu, C.-W.: Fast sweeping fifth order WENO scheme for static Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45, 514–536 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Yamaleev, N., Carpenter, M.: A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228, 4248–4272 (2009)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, S., Jiang, S., Zhang, Y.-T., Shu, C.-W.: The mechanism of sound generation in the interaction between a shock wave and two counter rotating vortices. Phys. Fluids 21, 076101 (2009)

    MATH  Google Scholar 

  45. Zhang, Y.-T., Shi, J., Shu, C.-W., Zhou, Y.: Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers. Phys. Rev. E 68, 046709 (2003)

    MathSciNet  Google Scholar 

  46. Zhang, Y.-T., Shu, C.-W.: High order WENO schemes for Hamilton-Jacobi equations on triangular meshes. SIAM J. Sci. Comput. 24, 1005–1030 (2003)

    MathSciNet  MATH  Google Scholar 

  47. Zhang, Y.-T., Shu, C.-W.: Third order WENO scheme on three dimensional tetrahedral meshes. Commun. Comput. Phys. 5, 836–848 (2009)

    MathSciNet  MATH  Google Scholar 

  48. Zhang, Y.-T., Shu, C.-W.: ENO and WENO schemes. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Analysis, Volume 17, Handbook of Numerical Methods for Hyperbolic Problems: Basic and Fundamental Issues, pp. 103–122. North-Holland, Elsevier, Amsterdam (2016)

    Google Scholar 

  49. Zhang, Y.-T., Shu, C.-W., Zhou, Y.: Effects of shock waves on Rayleigh-Taylor instability. Phys. Plasmas 13, 062705 (2006)

    MathSciNet  Google Scholar 

  50. Zhang, Y.-T., Zhao, H.-K., Chen, S.: Fixed-point iterative sweeping methods for static Hamilton-Jacobi equations. Methods Appl. Anal. 13, 299–320 (2006)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, Y.-T., Zhao, H.-K., Qian, J.: High order fast sweeping methods for static Hamilton-Jacobi equations. J. Sci. Comput. 29, 25–56 (2006)

    MathSciNet  MATH  Google Scholar 

  52. Zhao, R., Zhang, Y.-T., Chen, S.: Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete Contin. Dyn. Syst. - Ser. B 24, 4983–5001 (2019)

    MathSciNet  MATH  Google Scholar 

  53. Zhu, J., Qiu, J.-X.: A new type of finite volume WENO schemes for hyperbolic conservation laws. J. Sci. Comput. 73, 1338–1359 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Zhu, J., Shu, C.-W.: A new type of multi-resolution WENO schemes with increasingly higher order of accuracy on triangular meshes. J. Comput. Phys. 392, 19–33 (2019)

    MathSciNet  MATH  Google Scholar 

  56. Zenger, C.: Sparse grids. In: Hackbusch, W. (ed.) Notes on Numerical Fluid Mechanics, vol. 31, pp. 241–251. Vieweg, Braunschweig (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Tao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was partially supported by NSF grant DMS-1620108.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Zhang, YT. Fast Sparse Grid Simulations of Fifth Order WENO Scheme for High Dimensional Hyperbolic PDEs. J Sci Comput 87, 44 (2021). https://doi.org/10.1007/s10915-021-01444-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01444-9

Keywords

Navigation