Skip to main content
Log in

Photon entanglement through linear optics networks with birefringent crystals

  • Regular Article - Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We develop a linear optics network for the generation of photonic entangled states via designing a quantum circuit consisting of optical elements, i.e., beam splitters and birefringent crystals. To achieve the purpose, at first we introduce non-entangled single-photon states with their Gaussian spectral amplitude functions as the inputs of the circuit. Then, we show that the outcome of the circuit is an entangled Gaussian photonic state characterized with its covariance matrix. The quantum optical Gaussian states constitute an important class of robust quantum states which are manipulatable by the existing technologies. Meanwhile, we investigate the generation of biphoton entangled states, in detail. Also, we evaluate the concurrence (as a measure of entanglement) and also the probability density function (PDF) corresponding to biphoton states. In the continuation, we study other possible applications of such quantum circuits. We demonstrate that how one can estimate the position of outcome, i.e., the probability of finding entangled photons in a confidence ellipsoid. Our numerical results show that the entanglement of biphoton states strongly depends on their correlation matrix. As an outstanding feature, the PDF of the output state of the circuit provides an elegant criterion to identify the entangled photonic states from their separable counterparts. The designed quantum circuit and the obtained results may be implemented in the development of quantum information and communication protocols with continuous variables, besides their practical importance in realizing more complicated quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no external data associated with this theoretical work.]

References

  1. C.K. Law, I.A. Walmsley, J.H. Eberly, Phys. Rev. Lett. 84, 5304 (2000)

    Article  ADS  Google Scholar 

  2. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  3. D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Agrawal, B. Pradhan, J. Phys. A Math. Theor. 43, 235302 (2010)

    Article  ADS  Google Scholar 

  5. K. Mattle, H. Weinfurter, P.G. Kwiat, A. Zeilinger, Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  6. M. Zukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  7. J.W. Pan, D. Bouwmeester, H. Weinfurter, A. Zeilinger, Phys. Rev. Lett. 80, 3891 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Lasota, P. Kolenderski, Phys. Rev. A 98, 062310 (2018)

    Article  ADS  Google Scholar 

  9. H.J. Kimble, The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  10. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, M. Zukowski, Rev. Mod. Phys. 84, 777 (2012)

    Article  ADS  Google Scholar 

  11. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  Google Scholar 

  12. B.C. Sanders, J. Phys. A Math. Theor. 45, 244002 (2012)

    Article  ADS  Google Scholar 

  13. Y. Shen, L. Chen, J. Phys. A Math. Theor. 53, 125302 (2020)

    Article  ADS  Google Scholar 

  14. J. Chen, H. Fan, G. Ren, J. Phys. A Math. Theor. 43, 255302 (2010)

    Article  ADS  Google Scholar 

  15. E. Ghasemain, M.K. Tavassoly, Physica A 514, 715–811 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.O. Scully, MS Zubairy Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  17. E. Ghasemain, M.K. Tavassoly, Int. J. Mod. Phys. B 33(17), 1950181 (2019)

    Article  ADS  Google Scholar 

  18. K.P. Seshadreesan, H. Krovi, S. Guha, Phys. Rev. A 100, 022315 (2019)

    Article  ADS  Google Scholar 

  19. J. Eisert, S. Scheel, M.B. Plenio, Phys. Rev. Lett. 89, 137903 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Namiki, O. Gittsovich, S. Guha, N. Lütkenhaus, Phys. Rev. A 90, 062316 (2014)

    Article  ADS  Google Scholar 

  21. K. Sanaka, K.J. Resch, A. Zeilinger, Phys. Rev. Lett. 96, 083601 (2006)

    Article  ADS  Google Scholar 

  22. A.E. Ulanov, I.A. Fedorov, A.A. Pushkina, Y.V. Kurochkin, T.C. Ralph, A.I. Lvovsky, Nat. Photonics 9, 764 (2015)

    Article  ADS  Google Scholar 

  23. A.I. Lvovsky, J. Mlynek, Phys. Rev. Lett. 88, 250401 (2002)

    Article  ADS  Google Scholar 

  24. H. Takahashi, J.S. Neergaard-Nielsen, M. Takeuchi, M. Takeoka, K. Hayasaka, A. Furusawa, M. Sasaki, Nat. Photonics 4, 178 (2010)

    Article  ADS  Google Scholar 

  25. A. Datta, L. Zhang, J. Nunn, N.K. Langford, A. Feito, M.B. Plenio, I.A. Walmsley, Phys. Rev. Lett. 108, 060502 (2012)

    Article  ADS  Google Scholar 

  26. A.P. Lund, T.C. Ralph, Phys. Rev. A 80, 032309 (2009)

    Article  ADS  Google Scholar 

  27. J. Fiurasek, Phys. Rev. A 82, 042331 (2010)

    Article  ADS  Google Scholar 

  28. X.-B. Wanga, T. Hiroshima, A. Tomita, M. Hayashi, Phys. Rep. 448, 1 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  29. S.L. Braunstein, A.K. Pati, Quantum Information with Continuous Variables (Springer, Berlin, 2012)

    MATH  Google Scholar 

  30. H.-A. Bachor, A Guide to Experiments in Quantum Optics (Wiley, Hoboken, 1998)

    MATH  Google Scholar 

  31. A. Bandilla, J. Mod. Opt. 36, 435 (1989)

    Article  ADS  Google Scholar 

  32. S.M. Barnett, J. Jeffers, A. Gatti, Phys. Rev. A 57, 2034 (1998)

    Article  ADS  Google Scholar 

  33. J. Jeffers, S.M. Barnett, Phys. Rev. A 47, 3291 (1993)

    Article  ADS  Google Scholar 

  34. J. Jeffers, S.M. Barnett, J. Mod. Opt. 41, 1121 (1994)

    Article  ADS  Google Scholar 

  35. N. Killoran, T.R. Bromley, J.M. Arrazola, M. Schuld, N. Quesada, S. Lloyd, Phys. Rev. Res. 1, 033063 (2019)

    Article  Google Scholar 

  36. H.J. Kimble, D.F. Walls, J. Opt. Soc. Am. B 4, 1450 (1987)

    Article  ADS  Google Scholar 

  37. M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  38. H.P. Yuen, V.W.S. Chan, Opt. Lett. 8, 177 (1983)

    Article  ADS  Google Scholar 

  39. S. Zippilli, G.D. Giuseppe, D. Vitali, New J. Phys. 17, 043025 (2015)

    Article  ADS  Google Scholar 

  40. C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)

    Article  ADS  Google Scholar 

  41. R. Ghosh, C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. A 34, 3962 (1986)

    Article  ADS  Google Scholar 

  42. S. Wang, C.-X. Liu, J. Li, Q. Wang, Sci. Rep. 9, 3854 (2019)

    Article  ADS  Google Scholar 

  43. C. Denz, M. Schwab, C. Weilnau, Transverse-Pattern Formation in Photorefractive Optics (Springer, Berlin, 2003)

    Book  Google Scholar 

  44. M.J.A. de Dood, W.T.M. Irvine, D. Bouwmeester, Phys. Rev. Lett. 93, 040504–1 (2004)

    Article  ADS  Google Scholar 

  45. T.S. Humble, W.P. Grice, Phys. Rev. A 77, 022312 (2008)

    Article  ADS  Google Scholar 

  46. R. Kissell, J. Poserina, Optimal Sports Math, Statistics, and Fantasy (Academic Press, London, 2017)

    Google Scholar 

  47. R.A. Fisher, J. R. Stat. Soc. 85, 87 (1922)

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks to Prof. Stefano Mancini from Camerino University, Italy, for his collaboration. He designed and proposed the above quantum circuit for another project, and we used it for the generation of photonic entangled states in this paper. Also, E. Gh would like to thank the University of Camerino for warm hospitality and the Ministry of Science, Research and Technology of Iran for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ghasemian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghasemian, E., Tavassoly, M.K. Photon entanglement through linear optics networks with birefringent crystals. Eur. Phys. J. D 75, 103 (2021). https://doi.org/10.1140/epjd/s10053-021-00081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00081-z

Navigation