Skip to main content
Log in

Variation of Chromospheric Features as a Function of Latitude and Time Using Ca-K Spectroheliograms for Solar Cycles 15 – 23: Implications for Meridional Flow

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We have analyzed the Ca-K images obtained at Kodaikanal Observatory as a function of latitude and time for the period of 1913 – 2004 covering Solar Cycles 15 to 23. We have classified the chromospheric activity into plage, Enhanced Network (EN), Active Network (AN), and Quiet Network (QN) areas to differentiate between large strong active and small weak active regions. The strong active regions represent toroidal and weak active regions poloidal component of the magnetic field. We find that plage areas mostly up to \(50^{\circ }\) latitude belt vary with about 11-year solar cycle. We also find that a weak activity represented by EN, AN and QN varies with about 11-year with significant amplitude up to about \(50^{\circ}\) latitude in both hemispheres. The amplitude of the variation is minimum around \(50^{\circ }\) latitude and again increases by a small amount in the polar region. In addition, the plots of plages, EN, AN and QN as functions of time indicate the maximum of activity at different latitude occur at different epoch. To determine the phase difference for the different latitude belts, we have computed the cross-correlation coefficients of other latitude belts with the \(35^{\circ }\) latitude belt. We find that the activity shifts from mid-latitude belts towards equatorial belts at high speed at the beginning of a solar cycle and at lower speed as the cycle progresses. The speed of the shift varies between \(\approx19\) and \(3~\text{m}\,\text{s}^{-1}\) considering all the data for the observed period. This speed can be linked with the speed of meridional flows, believed to occur between convection zone and the surface of the Sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Babcock, H.W.: 1961, The topology of the Sun’s magnetic field and the 22-YEAR cycle. Astrophys. J. 133, 572. DOI. ADS.

    Article  ADS  Google Scholar 

  • Baumann, I., Schmitt, D., Schüssler, M.: 2006, A necessary extension of the surface flux transport model. Astron. Astrophys. 446(1), 307. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cameron, R., Hopkins, A.: 1998, A new estimate of the solar meridional flow. Solar Phys. 183(2), 263. DOI. ADS.

    Article  ADS  Google Scholar 

  • Charbonneau, P., Beaubien, G., St-Jean, C.: 2007, Fluctuations in Babcock-Leighton dynamos. II. Revisiting the Gnevyshev-Ohl rule. Astrophys. J. 658(1), 657. DOI. ADS.

    Article  ADS  Google Scholar 

  • Choudhuri, A.R., Schussler, M., Dikpati, M.: 1995, The solar dynamo with meridional circulation. Astron. Astrophys. 303, L29. ADS.

    ADS  Google Scholar 

  • Durrant, C.J., Turner, J.P.R., Wilson, P.R.: 2004, The mechanism involved in the reversals of the Sun’s polar magnetic fields. Solar Phys. 222(2), 345. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N.: 2008, Solar connections of geoeffective magnetic structures. J. Atmos. Solar-Terr. Phys. 70(17), 2078. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hale, G.E.: 1908, On the probable existence of a magnetic field in sun-spots. Astrophys. J. 28, 315. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Rightmire, L.: 2011, Variations in the axisymmetric transport of magnetic elements on the Sun: 1996–2010. Astrophys. J. 729(2), 80. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hathaway, D.H., Upton, L.: 2014, The solar meridional circulation and sunspot cycle variability. J. Geophys. Res. 119(5), 3316. DOI. ADS.

    Article  Google Scholar 

  • Hathaway, D.H., Nandy, D., Wilson, R.M., Reichmann, E.J.: 2003, Evidence that a deep meridional flow sets the sunspot cycle period. Astrophys. J. 589(1), 665. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.: 1974, Studies of solar magnetic fields. II: the magnetic fluxes. Solar Phys. 38(1), 59. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R., Labonte, B.J.: 1981, Surface magnetic fields during the solar activity cycle. Solar Phys. 74(1), 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Imada, S., Fujiyama, M.: 2018, Effect of magnetic field strength on solar differential rotation and meridional circulation. Astrophys. J. Lett. 864(1), L5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Imada, S., Matoba, K., Fujiyama, M., Iijima, H.: 2020, Solar cycle-related variation in solar differential rotation and meridional flow in Solar Cycle 24. Earth Planets Space 72(1), 182. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jiang, J., Cameron, R., Schmitt, D., Schüssler, M.: 2009, Countercell meridional flow and latitudinal distribution of the solar polar magnetic field. Astrophys. J. Lett. 693(2), L96. DOI. ADS.

    Article  ADS  Google Scholar 

  • Jin, C.L., Wang, J.X.: 2012, The latitude distribution of small-scale magnetic elements in Solar Cycle 23. Astrophys. J. 745(1), 39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1959, Observations of solar magnetic fields in plage regions. Astrophys. J. 130, 366. DOI. ADS.

    Article  ADS  Google Scholar 

  • Leighton, R.B.: 1964, Transport of magnetic fields on the Sun. Astrophys. J. 140, 1547. DOI. ADS.

    Article  MATH  ADS  Google Scholar 

  • Leighton, R.B., Noyes, R.W., Simon, G.W.: 1962, Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474. DOI. ADS.

    Article  ADS  Google Scholar 

  • Makarov, V.I., Callebaut, D.K.: 1999, On polar magnetic field reversals of the Sun including the Maunder minimum. In: Wilson, A., et al.(eds.) Magnetic Fields and Solar Processes, ESA Special Publication 9, 117. ADS.

    Google Scholar 

  • Nindos, A., Zirin, H.: 1998, The relation of CA II K features to magnetic field. Solar Phys. 179(2), 253. DOI. ADS.

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L., Baudin, F.: 1998, Emergence of magnetic flux on the Sun as the cause of a 158-day periodicity in sunspot areas. Nature 394(6693), 552. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priyal, M., Singh, J., Ravindra, B., Priya, T.G., Amareswari, K.: 2014, Long term variations in chromospheric features from Ca-K images at Kodaikanal. Solar Phys. 289(1), 137. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priyal, M., Singh, J., Belur, R., Rathina, S.K.: 2017, Long-term variations in the intensity of plages and networks as observed in Kodaikanal Ca-K digitized data. Solar Phys. 292(7), 85. DOI. ADS.

    Article  ADS  Google Scholar 

  • Priyal, M., Singh, J., Ravindra, B., Shekar B, C.: 2019, Periodic and quasi-periodic variations in the Ca K index during the 20th century using Kodaikanal data. Solar Phys. 294(9), 131. DOI. ADS.

    Article  ADS  Google Scholar 

  • Raouafi, N.-E., Harvey, J.W., Henney, C.J.: 2007, Latitude distribution of polar magnetic flux in the chromosphere near solar minimum. Astrophys. J. 669(1), 636. DOI. ADS.

    Article  ADS  Google Scholar 

  • Raoufi, D., Kiasatpour, A., Fallah, H.R., Rozatian, A.S.H.: 2007, Surface characterization and microstructure of ITO thin films at different annealing temperatures. Appl. Surf. Sci. 253(23), 9085. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L., Title, A.M.: 2002, What is missing from our understanding of long-term solar and heliospheric activity? Astrophys. J. 577(2), 1006. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schwabe, M.: 1843, Die Sonne. Von Herrn Hofrath Schwabe. Astron. Nachr. 20(17), 283. DOI. ADS.

    Article  ADS  Google Scholar 

  • Simon, G.W., Leighton, R.B.: 1964, Velocity fields in the solar atmosphere. III. Large-scale motions, the chromospheric network, and magnetic fields. Astrophys. J. 140, 1120. DOI. ADS.

    Article  ADS  Google Scholar 

  • Sindhuja, G., Singh, J., Ravindra, B.: 2014, Study of meridional flow using Ca-K line profiles during Solar Cycles 22 and 23. Astrophys. J. 792(1), 22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Singh, J., Priyal, M., Sindhuja, G., Ravindra, B.: 2018, Variations in Ca-K line profiles and Ca-K line features as a function of latitude and solar cycle during the 20th century. IAU Symp. 340, 23. DOI. ADS.

    Article  ADS  Google Scholar 

  • Skumanich, A., Smythe, C., Frazier, E.N.: 1975, On the statistical description of inhomogeneities in the quiet solar atmosphere. I. Linear regression analysis and absolute calibration of multichannel observations of the \(\text{Ca}^{+}\) emission network. Astrophys. J. 200, 747. DOI. ADS.

    Article  Google Scholar 

  • Svalgaard, L., Duvall, T.L. Jr., Scherrer, P.H.: 1978, The strength of the Sun’s polar fields. Solar Phys. 58(2), 225. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y.-M., Sheeley, N.R. Jr.: 1988, The solar origin of long-term variations of the interplanetary magnetic field strength. J. Geophys. Res. 93(A10), 11227. DOI. ADS.

    Article  ADS  Google Scholar 

  • Worden, J.R., White, O.R., Woods, T.N.: 1998, Evolution of chromospheric structures derived from Ca II K spectroheliograms: implications for solar ultraviolet irradiance variability. Astrophys. J. 496(2), 998. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for the valuable comments. We thank the numerous observers who has made the observations over a century and kept the data in good environment conditions. We acknowledge the enormous work done by the digitization team lead by Jagdev Singh. PD thanks the CSIR, New Delhi for their support. RJ acknowledges the Department of Science and Technology (DST), Government of India for the INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pooja Devi.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, P., Singh, J., Chandra, R. et al. Variation of Chromospheric Features as a Function of Latitude and Time Using Ca-K Spectroheliograms for Solar Cycles 15 – 23: Implications for Meridional Flow. Sol Phys 296, 49 (2021). https://doi.org/10.1007/s11207-021-01798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01798-1

Keywords

Navigation