Skip to main content
Log in

Electrical Resistivity Training Effect in the Exchange-Biased GdBaCo2O5.5 Cobaltite

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The nature of the training effect in exchange-biased compounds is studied. This effect consists in a decrease in the exchange bias field (HEB) during a cyclic change in the magnetic field. The electrical resistivity training effects in the GdBaCo2O5 + δ (δ ≈ 0.5) cobaltite, namely, the changes in the electrical resistivity during a cyclic change in the magnetic field (ρcycl(N), N is the cycle number) and during sample rotation (ρrot(N)), are shown to be analogs of the HEB training effect. Like HEB, the electrical resistivity changes sharply after the first cycle (N > 1(2)) and slowly during the next cycles, which is related to a decrease in the magnetization of ferromagnetic particles. These results are explained by the influence of two mechanisms: the magnetization decreases fast in the first mechanism and slowly in the second. The nonequilibrium state and the training effect are assumed to be interrelated and caused by the existence of single-domain ferromagnetic particles of different volumes V and by the dependence of the magnetization relaxation time of the particles on the single-domain (superparamagnetic) particle volume, τ ∝ exp(KanV/kT), where Kan is the magnetic anisotropy energy density. The nature of the sharp changes in HEB and the electrical resistivity after the first cycles is caused by the closeness of the small single-domain particle energy (KanV) to heat energy kT. In this model, the exchange bias disappears (HEB = 0) during infinite cyclic magnetization reversal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).

    Article  ADS  Google Scholar 

  2. W. H. Meiklejohn and C. P. Bean, Phys. Rev. 105, 904 (1957).

    Article  ADS  Google Scholar 

  3. A. E. Berkowitz and K. Takano, J. Magn. Magn. Mater. 200, 552 (1999).

    Article  ADS  Google Scholar 

  4. J. Nogues and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).

    Article  ADS  Google Scholar 

  5. R. L. Stamps, J. Phys. D 33, R247 (2000).

    Article  ADS  Google Scholar 

  6. M. Kiwi, J. Magn. Magn. Mater. 234, 584 (2001).

    Article  ADS  Google Scholar 

  7. F. Radu and H. Zabel, Springer Tracts Mod. Phys. 227, 97 (2008).

    Article  ADS  Google Scholar 

  8. K. Giri and T. K. Nath, J. Nanosci. Nanotechnol. 14, 1209 (2014).

    Article  Google Scholar 

  9. C. Binek, Phys. Rev. B 70, 014421 (2004).

    Article  ADS  Google Scholar 

  10. A. Hochstrat, Ch. Binek, and W. Kleemann, Phys. Rev. B 65, 092409 (2002).

    Article  ADS  Google Scholar 

  11. A. Hoffmann, Phys. Rev. Lett. 93, 097203 (2004).

    Article  ADS  Google Scholar 

  12. P. Miltényi, M. Gierlings, J. Keller, et al., Phys. Rev. Lett. 84, 4224 (2000).

    Article  ADS  Google Scholar 

  13. A. P. Malozemoff, Phys. Rev. B 37, 7673 (1988);

    Article  ADS  Google Scholar 

  14. J. Appl. Phys. 63, 3874 (1988).

  15. D. Paccard, C. Schlenker, O. Massenet, et al., Phys. Status Solidi B 16, 301 (1966).

    Article  ADS  Google Scholar 

  16. N. I. Solin, S. V. Naumov, and S. V. Telegin, J. Exp. Theor. Phys. 128, 281 (2019).

    Article  ADS  Google Scholar 

  17. K. B. Vlasov, N. V. Volkenshtein, S. V. Vonsovskii, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 28, 423 (1964).

    Google Scholar 

  18. N. I. Solin, S. V. Naumov, S. V. Telegin, and A. V. Korolev, JETP Lett. 104, 49 (2016).

    Article  ADS  Google Scholar 

  19. L. Neel, Rev. Mod. Phys. 25, 293 (1953);

    Article  ADS  Google Scholar 

  20. Ann. Geophys. 5, 99 (1949).

  21. A. Maignan, C. Martin, D. Pelloquin, et al., J. Solid State Chem. 142, 247 (1999).

    Article  ADS  Google Scholar 

  22. A. A. Taskin, A. N. Lavrov, and Y. Ando, Phys. Rev. B 71, 134414 (2005).

    Article  ADS  Google Scholar 

  23. M. P. Pechini, US Patent No. 3330697 (1967).

  24. N. I. Solin, S. V. Naumov, S. V. Telegin, and A. V. Korolev, J. Exp. Theor. Phys. 125, 1096 (2017).

    Article  ADS  Google Scholar 

  25. M. Patra, S. Majumdar, and S. Giri, J. Phys.: Condens. Matter 21, 486003 (2009).

    Google Scholar 

  26. M. Patra, S. Majumdar, and S. Giri, Eur. Phys. Lett. 87, 58002 (2009).

    Article  ADS  Google Scholar 

  27. B. H. Miller and E. Dan Dahlberg, Appl. Phys. Lett. 69, 393216 (1996).

    Google Scholar 

  28. C. Leighton, M. Song, J. Nogués, et al., J. Appl. Phys. 88, 344 (2000).

    Article  ADS  Google Scholar 

  29. H. Fulara, S. Chaudhary, and S. C. Kashyap, Appl. Phys. Lett. 101, 142408 (2012).

    Article  ADS  Google Scholar 

  30. N. I. Solin, S. V. Naumov, and V. A. Kazantsev, J. Exp. Theor. Phys. 130, 690 (2020).

    Article  ADS  Google Scholar 

  31. D. Niebieskikwiat and M. B. Salamon, Phys. Rev. B 72, 174422 (2005).

    Article  ADS  Google Scholar 

  32. C. P. Bean, J. Appl. Phys. 26, 1381 (1955).

    Article  ADS  Google Scholar 

  33. J. S. Kouvel, J. Phys. Chem. Solids 16, 107 (1960).

    Article  ADS  Google Scholar 

  34. W. H. Meiklejohn, J. Appl. Phys. 33, 1328 (1962).

    Article  ADS  Google Scholar 

  35. A. K. Zvezdin and K. A. Zvezdin, Priroda, No. 9, 8 (2001).

Download references

ACKNOWLEDGMENTS

We thank A.V. Korolev for performing the magnetic measurements.

Funding

This work was performed in terms of a state assignment of the Federal Agency of Scientific Organizations (project Spin no. AAAA-A18-118020290104-2) and was supported in part by the Russian Foundation for Basic Research (project no. 20-02-00461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Solin.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solin, N.I., Naumov, S.V. Electrical Resistivity Training Effect in the Exchange-Biased GdBaCo2O5.5 Cobaltite. J. Exp. Theor. Phys. 132, 264–276 (2021). https://doi.org/10.1134/S1063776121020084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121020084

Navigation