Skip to main content
Log in

Studies of the Fragmentation of Spherical Aluminum Projectiles on a Heavy Mesh at Velocities of up to 7 km/s

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The results of experimental studies and numerical simulation of the fragmentation of aluminum alloy projectiles on a tungsten mesh bumper at impact velocities of up to 7 km/s are presented. The projectiles are accelerated by a two-stage light-gas gun. X-ray photography is used to observe the state of a projectile before its impact on the mesh bumper and the process of its fragmentation. The parameters of the cloud of fragments of the projectile are recorded using a thick witness plate made of AMg6 alloy placed behind the mesh bumper. Numerical simulation is performed by the smoothed particle hydrodynamic (SPH) method. Specific features of the morphology of the cloud of fragments are pointed out, and the velocities of the fragments in different parts of the cloud, as well as the arising cumulative effect, are estimated. The experimental results are compared with the results of numerical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. The Inter-Agency Space Debris Coordination Committee, Protection Manual, IADC-04-03, Version 7.1 (2018). https://www.iadc-home.org/documents_public/view/page/5/id/81#u.

  2. S. I. Anisimov, V. V. Zhakhovsky, N. A. Inogamov, K. P. Migdal, Yu. V. Petrov, and V. A. Khokhlov, J. Exp. Theor. Phys. 129, 757 (2019).

    Article  ADS  Google Scholar 

  3. E. L. Christiansen and J. H. Kerr, Int. J. Impact Eng. 14, 169 (1993).

    Article  Google Scholar 

  4. L. N. Bezrukov, I. M. Gadasin, A. I. Kiselev, et al., Kosmonavt. Raketostr. 18 (2000).

  5. F. Horz, M. J. Cintala, R. P. Bernhard, et al., Int. J. Impact Eng. 17, 431 (1995).

    Article  Google Scholar 

  6. N. N. Myagkov, T. A. Shumikhin, and L. N. Bezrukov, Int. J. Impact Eng. 37, 980 (2010).

    Article  Google Scholar 

  7. P. N. Kalmykov, S. V. Kolchev, N. V. Lapichev, et al., Mekh. Kompoz. Mater. Konstr. 21 (1), 3 (2015).

    Google Scholar 

  8. P. N. Kalmykov, N. V. Lapichev, I. A. Mikhailov, et al., Mekh. Kompoz. Mater. Konstr. 24 (1), 46 (2018).

    Google Scholar 

  9. A. V. Gerasimov, D. B. Dobritsa, S. V. Pashkov, et al., Cosmic Res. 54, 118 (2016).

    Article  ADS  Google Scholar 

  10. A. Cherniaev and I. Telichev, Adv. Mater. Sci. Eng. 2017, 7218482 (2017).

    Article  Google Scholar 

  11. N. Myagkov and T. Shumikhin, AIMS Mater. Sci. 6, 685 (2019).

    Google Scholar 

  12. J. O. Hallquist, LS-DYNA Theory Manual (Livermore Software Technol. Corp., 2006).

    Google Scholar 

  13. J. J. Monaghan, Rep. Progr. Phys. 68, 1703 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  14. M. S. Egorova, S. A. Dyachkov, A. N. Parshikov, and V. Zhakhovsky, Computer Phys. Commun. 234, 112 (2019).

    Article  ADS  Google Scholar 

  15. V. E. Fortov, V. V. Kim, I. V. Lomonosov, et al., Int. J. Impact Eng. 33, 244 (2006).

    Article  Google Scholar 

  16. P. N. Kalmykov, N. V. Lapichev, and G. P. Shlyapnikov, RF Patent No. 2238503 (2003).

  17. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 2008; Academic, New York, 1966, 1967).

  18. G. R. Johnson and W. H. Cook, in Proceedings of the 7th International Symposium on Ballistics, The Hague, April 19–21, 1983, p. 541.

  19. I. Rohr, H. Nahme, K. Thoma, and C. E. Anderson, Jr., Int. J. Impact Eng. 35, 811 (2008).

    Article  Google Scholar 

  20. T. J. Holmquist, D. W. Templeton, and K. D. Bishnoi, Int. J. Impact Eng. 25, 211 (2001).

    Article  Google Scholar 

  21. R. Vignjevic, J. C. Campbell, N. K. Bourne, and N. Djordjevic, J. Appl. Phys. 104, 044904 (2008).

    Article  ADS  Google Scholar 

  22. http://www.matweb.com.

  23. N. S. Brar, V. S. Joshi, and B. W. Harris, AIP Conf. Proc. 1195, 945 (2009).

    Article  ADS  Google Scholar 

  24. M. M. Budzevich, V. V. Zhakhovsky, C. T. White, and I. I. Oleynik, Phys. Rev. Lett. 109, 125505 (2012).

    Article  ADS  Google Scholar 

  25. J. A. Zukas, T. Nicholas, H. F. Swift, et al., Impact Dynamics (Wiley, New York, 1982).

    Google Scholar 

  26. P. N. Kalmykov, N. V. Lapichev, I. A. Mikhailov, et al., Mekh. Kompoz. Mater. Konstr. 25 (1), 37 (2019).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. N. Myagkov or T. A. Shumikhin.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myagkov, N.N., Kalmykov, P.N., Lapichev, N.V. et al. Studies of the Fragmentation of Spherical Aluminum Projectiles on a Heavy Mesh at Velocities of up to 7 km/s. J. Exp. Theor. Phys. 132, 177–188 (2021). https://doi.org/10.1134/S1063776121020138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121020138

Navigation