Skip to main content
Log in

Semiclassical Description of Undulator Radiation

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a semiclassical approximation for treating the radiation from classical currents. In particular, we present exact quantum states of the quantized electromagnetic field interacting with classical currents. These states are used to calculate a probability of many-photon radiation from the vacuum initial state of the electromagnetic field. In this manner, in the present article, we study characteristics of electromagnetic radiation of a planar undulator. We find the total radiated energy and its spectral-angular distribution. We compare our results with ones obtained in the framework of classical electrodynamics, discussing differences introduced by accurate accounting for the quantum nature of electromagnetic radiation and present results of some numerical calculations that confirm, in particular, the latter discussion. In Appendix we present the calculation of the radiated energy using an alternative parametrization of the trajectory of electrons moving in a planar undulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Here and in what follows we use the summation convention for dummy indices, i.e., aibi = \(\sum\nolimits_i {{{a}^{i}}} \)bi, unless explicitly stated otherwise.

REFERENCES

  1. F. R. Elder, A. M. Gurevitch, R. V. Langmuir, et al., Phys. Rev. 71, 829 (1947).

    Article  ADS  Google Scholar 

  2. H. E. Huxley, A. R. Faruqi, J. Bordas, et al., Nature (London, U.K.) 284, 140 (1980);

    Article  ADS  Google Scholar 

  3. L. Chen, K. L. Durr, and E. Gouaux, Science (Washington, DC, U. S.) 345, 1021 (2014);

    Article  ADS  Google Scholar 

  4. S. Kneip, C. McGuffey, F. Dollar, et al., Appl. Phys. Lett. 99, 093701 (2011);

    Article  ADS  Google Scholar 

  5. G. N. Afanasiev, Vavilov-Cherenkov and Synchrotron Radiation: Foundations and Applications (Springer, New York, 2004); H. Saisho and Y. Gohshi, Applications of Synchrotron Radiation to Materials Analysis (Elsevier, Amsterdam, 1996); M. Kono, in Medical Applications of Synchrotron Radiation, Ed. by M. Ando and C. Uyama (Springer, Tokyo, 1998).

  6. V. L. Ginsburg, Izv. Akad. Nauk SSSR, Ser. Fiz. 11, 165 (1947).

    Google Scholar 

  7. N. A. Korkhmazyan and S. S. Elbakyan, Sov. Phys. Dokl. 17, 345 (1972).

    ADS  Google Scholar 

  8. H. Motz, J. Appl. Phys. 22, 527 (1951).

    Article  ADS  Google Scholar 

  9. G. A. Schott, Philos. Mag. 13, 657 (1907);

    Article  Google Scholar 

  10. Ann. Phys. 329, 635 (1907);

  11. Electromagnetic Radiation (Cambrige Univ. Press, Cambrige, 1912).

  12. J. Schwinger, Phys. Rev. 75, 1912 (1949).

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Schwinger, Proc. Natl. Acad. Sci. U. S. A. 40, 132 (1954).

    Article  ADS  Google Scholar 

  14. A. A. Sokolov and I. M. Ternov, Sov. Phys. JETP 4, 396 (1957);

    Google Scholar 

  15. Synchrotron Radiation (Academic, Berlin, 1968); Radiation from Relativistic Electrons (American Institute of Physics, New York, 1986).

  16. W. H. Furry, Phys. Rev. 81, 115 (1951);

    Article  ADS  MathSciNet  Google Scholar 

  17. R. P. Feynman, Phys. Rev. 76, 749 (1949);

    Article  ADS  Google Scholar 

  18. D. M. Gitman, Izv. Vyssh. Uchebn. Zaved., Fiz. 19, 81 (1976);

    Google Scholar 

  19. Izv. Vyssh. Uchebn. Zaved., Fiz. 19, 86 (1976);

  20. J. Phys. A 10, 2007 (1977); in Quantum Electrodynamics with External Fields, Ed. by D. M. Gitman (Tomsk. Gos. Univ., Tomsk, 1977), p. 132 [in Russian].

  21. J. Schwinger, Particles, Sources, and Fields (Addison-Wesley, Reading, MA, 1970, 1973), Vols. 1, 2.

  22. J. Schwinger, Phys. Rev. D 7, 1696 (1973).

    Article  ADS  Google Scholar 

  23. V. G. Bagrov, D. M. Gitman, A. A. Shishmarev, et al., J. Synchrotr. Rad. 27, 902 (2020).

    Article  Google Scholar 

  24. D. F. Alferov, Y. A. Bashmakov, K. A. Belovintsev, et al., Part. Accel. 9, 223 (1979); D. F. Alferov, Y. A. Bashmakov, and P. A. Cherenkov, Sov. Phys. Usp. 32, 200 (1989); D. F. Alferov, Y. A. Bashmakov, and E. G. Bessonov, Preprint FIAN 23, 1 (1972); Preprint FIAN 118, 1 (1975); Sov. Tech. Phys. 21, 1408 (1976); Sov. Phys. Tech. Phys. 18, 1336 (1974).

    ADS  Google Scholar 

  25. V. G. Bagrov, V. R. Khalilov, A. A. Sokolov, et al., Ann. Phys. 30, 1 (1973).

    Article  Google Scholar 

  26. V. G. Bagrov, D. M. Gitman, A. A. Sokolov, et al., J. Tech. Fiz. 45, 1948 (1975).

    Google Scholar 

  27. V. N. Baier and V. M. Katkov, Sov. Phys. JETP 26, 854 (1968);

    ADS  Google Scholar 

  28. V. N. Baier, V. M. Katkov, and V. M. Strakhovenko, Sov. Phys. JETP 36, 1120 (1973).

    ADS  Google Scholar 

  29. S. Krinsky, IEEE Trans. Nucl. Sci. 307, 3078 (1983).

    Article  ADS  Google Scholar 

  30. H. Wiedemann, Synchrotron Radiation (Springer, Berlin, 2003).

    Book  Google Scholar 

  31. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, New York, 2007).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

A.A. Shishmarev is supported by the Russian Foundation for Basic Research (RFBR), project no. 19-32-60010. A.D. Levin is supported permanently by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq). V.G. Bagrov acknowledges support from Tomsk State University Competitiveness Improvement Program. D.M. Gitman is supported by the Grant no. 2016/03319-6, Fundção de Amparo à Pesquisa do Estado de São Paulo (FAPESP), and permanently by CNPq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Shishmarev, A. D. Levin, V. G. Bagrov or D. M. Gitman.

Appendices

APPENDIX

Calculating Radiation of Planar Undulator in Semiclassical Approximation Using an Alternative Parametrization of Trajectory

In [15] a special trajectory for electrons moving in a plane undulator were used to calculate their radiation. It is supposed that the trajectory of electrons is plane and symmetrical relatively to the axis x, and consists of circular arcs of length l and radius R. This representation provides an alternative parametrization of the electron trajectory in plane undulator. In this appendix we apply the semiclassical method to calculate the radiation from electrons moving in such a trajectory.

Consider electrons moving in a periodic magnetic field parallel to the axis z, such that in each period the magnetic field is homogeneous and constant. The undulator is assumed to be of infinite length. A length l of each individual arc is related to the effective radius of curvature R via the so-called injection angle α = l/R, 0 < α < π. The velocity of the electrons is \({v}\) = cβ = ωR, where ω is the angular velocity. The electrons move along the axis x with an average velocity \({{{v}}_{0}}\) = c\(\bar {\beta }\), and perform periodic oscillations along the axes x and y. This implies

$$\begin{gathered} \bar {\beta } = \beta {\text{sinc}}(\alpha {\text{/}}2),\quad T = 2\pi \omega _{0}^{{ - 1}} = 2\alpha {{\omega }^{{ - 1}}}, \\ {{\omega }_{0}} = \pi \omega {{\alpha }^{{ - 1}}} = \pi \beta c{{l}^{{ - 1}}}. \\ \end{gathered} $$
(29)

The trajectory at the time interval (0, T) can be presented as [15]

$$\begin{gathered} x(t) = \left\{ \begin{gathered} R[\sin (\alpha {\text{/}}2) + \sin (\omega t - \alpha {\text{/}}2)],\quad t \in {{T}_{1}} \hfill \\ R[3\sin (\alpha {\text{/}}2) + \sin (\omega t - \alpha {\text{/}}2)],\quad t \in {{T}_{2}}, \hfill \\ \end{gathered} \right. \\ y(t) = \left\{ \begin{gathered} R[\cos (\omega t - \alpha {\text{/}}2) - \cos (\alpha {\text{/}}2)],\quad t \in {{T}_{1}} \hfill \\ R[\cos (\alpha {\text{/}}2) - \cos (\omega t - \alpha {\text{/}}2)],\quad t \in {{T}_{2}}, \hfill \\ \end{gathered} \right. \\ \end{gathered} $$
(30)

where the time intervals T1 and T2 are defined as

$${{T}_{1}} = [0,T{\text{/}}2];\quad {{T}_{2}} = (T{\text{/}}2,T].$$
(31)

The current ji(x) formed by electrons moving in the trajectory (30) has the form

$$\begin{gathered} {{j}^{i}}(x) = e{{{v}}^{i}}(t)\delta (x - x(t))\delta (y - y(t))\delta (z - z(t)), \\ {{{v}}^{i}}(t) = {{{\dot {r}}}^{i}}(t) = (\dot {x}(t),\dot {y}(t),0), \\ \dot {x}(t) = \left\{ \begin{gathered} \omega R\cos [\alpha {\text{/}}2 - \omega t],\quad t \in {{T}_{1}} \hfill \\ \omega R\cos [3\alpha {\text{/}}2 - \omega t],\quad t \in {{T}_{2}}, \hfill \\ \end{gathered} \right. \\ \dot {y}(t) = \left\{ \begin{gathered} \omega R\sin [\alpha {\text{/}}2 - \omega t],\quad t \in {{T}_{1}} \hfill \\ - \omega R\sin [3\alpha {\text{/}}2 - \omega t],\quad t \in {{T}_{2}}. \hfill \\ \end{gathered} \right. \\ \end{gathered} $$
(32)

Let us calculate the radiation energy during a single period T. The functions ykλ(t) at the interval t = T can be calculated as

$${{y}_{{{\mathbf{k}}\lambda }}}(T) = {{y}_{{{\mathbf{k}}\lambda }}}({{T}_{1}}) + {{y}_{{{\mathbf{k}}\lambda }}}({{T}_{2}}).$$
(33)

Using the definitions (4) for the wave vector k and polarization vectors \({{\epsilon }_{{{\mathbf{k}}\lambda }}}\), we obtain

$$\begin{gathered} {{y}_{{{\mathbf{k}}1}}}({{T}_{j}}) = {{z}_{j}}{{e}^{{i{{\phi }_{j}}}}}\cos \theta \int\limits_{\tau _{j}^{{{\text{in}}}}}^{\tau _{j}^{{{\text{out}}}}} {{{\omega }^{{ - 1}}}d{{\tau }_{j}}} \\ \, \times [c\bar {\beta }\cos \varphi + \omega R\cos {{\tau }_{j}}]\exp [i\kappa ({{\tau }_{j}})], \\ {{y}_{{{\mathbf{k}}2}}}({{T}_{j}}) = - {{z}_{j}}{{e}^{{i{{\phi }_{j}}}}}\int\limits_{\tau _{j}^{{{\text{in}}}}}^{\tau _{j}^{{{\text{out}}}}} {{{\omega }^{{ - 1}}}d{{\tau }_{j}}} \\ \, \times [c\bar {\beta }\sin \varphi + {{( - 1)}^{{j - 1}}}\omega R\sin {{\tau }_{j}}]\exp [i\kappa ({{\tau }_{j}})], \\ \end{gathered} $$
(34)

where we used the notation

$$\begin{gathered} \kappa ({{\tau }_{j}}) = c{{k}_{0}}{{\omega }^{{ - 1}}}{{\tau }_{j}} - \xi \sin {{\tau }_{j}},\quad \xi = R{{k}_{0}}\sin \theta , \\ {{z}_{j}} = ie\exp [ - i\xi {{f}_{j}}(\varphi ,\alpha )]{{[\hbar c{{k}_{0}}{{(2\pi )}^{2}}]}^{{ - 1/2}}},\quad j = 1,2, \\ {{f}_{1}}(\varphi ,\alpha ) = \sin (\alpha {\text{/}}2)\cos \varphi - \cos (\alpha {\text{/}}2)\sin \varphi , \\ \end{gathered} $$
$$\begin{gathered} {{f}_{2}}(\varphi ,\alpha ) = \cos (\alpha {\text{/}}2)\sin \varphi + 3\sin (\alpha {\text{/}}2)\cos \varphi , \\ {{\tau }_{1}} = \omega t - \alpha {\text{/}}2 + \varphi ,\quad {{\tau }_{2}} = \omega t - 3\alpha {\text{/}}2 - \varphi , \\ \end{gathered} $$
(35)
$$\begin{gathered} \tau _{1}^{{{\text{in}}}} = \varphi - \alpha {\text{/}}2,\quad \tau _{1}^{{{\text{out}}}} = \varphi + \alpha {\text{/}}2, \\ \tau _{2}^{{{\text{in}}}} = - \varphi - \alpha {\text{/}}2,\quad \tau _{2}^{{{\text{out}}}} = \alpha {\text{/}}2 - \varphi , \\ {{\phi }_{1}} = {{\omega }^{{ - 1}}}\kappa (\alpha {\text{/}}2 - \varphi ),\quad {{\phi }_{2}} = {{\omega }^{{ - 1}}}\kappa (\varphi + 3\alpha {\text{/}}2). \\ \end{gathered} $$

Using the known expansions of trigonometric functions in terms of Bessel functions,

$$\exp ( - i\xi \sin \tau ) = \sum\limits_{n = - \infty }^{ + \infty } {{{J}_{n}}(\xi )\exp ( - in\tau ),} $$
$$\sin \tau \exp ( - i\xi \sin \tau ) = i\sum\limits_{n = - \infty }^{ + \infty } {J_{n}^{'}(\xi )\exp ( - in\tau ),} $$
(36)
$$\cos \tau \exp ( - i\xi \sin \tau ) = \sum\limits_{n = - \infty }^{ + \infty } {\frac{n}{\xi }{{J}_{n}}(\xi )\exp ( - in\tau ),} $$

we rewrite (34) as

$$\begin{gathered} {{y}_{{{\mathbf{k}}1}}}({{T}_{j}}) = {{z}_{j}}{{e}^{{i{{\phi }_{j}}}}}\sum\limits_{n = - \infty }^{ + \infty } {\cos \theta [n{{{({{k}_{0}}\sin \theta )}}^{{ - 1}}}} \\ \, + {{\omega }^{{ - 1}}}c\bar {\beta }\cos \varphi ]{{J}_{n}}(\xi ){{K}_{n}}({{T}_{j}}), \\ {{y}_{{{\mathbf{k}}2}}}({{T}_{j}}) = - {{z}_{j}}{{e}^{{i{{\phi }_{j}}}}}\sum\limits_{n = - \infty }^{ + \infty } {[{{\omega }^{{ - 1}}}c\bar {\beta }\sin \varphi {{J}_{n}}(\xi )} \\ \, + {{( - 1)}^{{j - 1}}}iRJ_{n}^{'}(\xi )]{{K}_{n}}({{T}_{j}}), \\ \end{gathered} $$
(37)

where functions Kn(Tj) have the form

$$\begin{gathered} {{K}_{n}}({{T}_{j}}) = \int\limits_{\tau _{j}^{{{\text{in}}}}}^{\tau _{j}^{{{\text{out}}}}} {d{{\tau }_{j}}\exp [i({{\omega }^{{ - 1}}}c{{k}_{0}} - n){{\tau }_{j}}]} \\ = \exp [{{( - 1)}^{j}}i({{\omega }^{{ - 1}}}c{{k}_{0}} - n)\varphi ]\frac{{\sin [\alpha ({{\omega }^{{ - 1}}}c{{k}_{0}} - n){\text{/}}2]}}{{({{\omega }^{{ - 1}}}c{{k}_{0}} - n){\text{/}}2}}. \\ \end{gathered} $$
(38)

The functions pkλ(T) on the time interval T have the form

$${{p}_{{{\mathbf{k}}\lambda }}}(T) = {\text{|}}{{y}_{{{\mathbf{k}}\lambda }}}(T){{{\text{|}}}^{2}} = {\text{|}}{{y}_{{{\mathbf{k}}\lambda }}}({{T}_{1}}) + {{y}_{{{\mathbf{k}}\lambda }}}({{T}_{2}}){{{\text{|}}}^{2}}.$$
(39)

Substituting expressions (37) into (39), we obtain

$$\begin{gathered} {{p}_{{{\mathbf{k}}1}}}(T)\, = \,{{\left| {\sum\limits_{n = - \infty }^{ + \infty } {[n{{{({{k}_{0}}{\text{sin}}\theta )}}^{{ - 1}}}\, + \,{{\omega }^{{ - 1}}}c\bar {\beta }{\text{cos}}\varphi ]{\text{cos}}\theta {{J}_{n}}(\xi ){{S}_{1}}} } \right|}^{2}}, \\ {{p}_{{{\mathbf{k}}2}}}(T) = {{\left| {\sum\limits_{n = - \infty }^{ + \infty } {[{{\omega }^{{ - 1}}}c\bar {\beta }\sin \varphi {{J}_{n}}(\xi ){{S}_{1}} + iRJ_{n}^{'}(\xi ){{S}_{2}}]} } \right|}^{2}}, \\ {{S}_{1}} = {{z}_{1}}{{e}^{{i{{\phi }_{1}}}}}{{K}_{n}}({{T}_{1}}) + {{z}_{2}}{{e}^{{i{{\phi }_{2}}}}}{{K}_{n}}({{T}_{2}}), \\ {{S}_{2}} = {{z}_{1}}{{e}^{{i{{\phi }_{1}}}}}{{K}_{n}}({{T}_{1}}) - {{z}_{2}}{{e}^{{i{{\phi }_{2}}}}}{{K}_{n}}({{T}_{2}}). \\ \end{gathered} $$
(40)

The total radiated energy W(T) takes the form

$$W(T) = \int\limits_0^\infty {k_{0}^{2}d{{k}_{0}}\int\limits_0^\pi {{\text{sin}}\theta d\theta } } \int\limits_0^{2\pi } {d\varphi [{{p}_{{{\mathbf{k}}1}}}(T) + {{p}_{{{\mathbf{k}}2}}}(T)]} ,$$
(41)

where pk1(T) and pk2(T) are given by Eq. (40).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishmarev, A.A., Levin, A.D., Bagrov, V.G. et al. Semiclassical Description of Undulator Radiation. J. Exp. Theor. Phys. 132, 247–256 (2021). https://doi.org/10.1134/S1063776121020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776121020072

Navigation