Skip to main content
Log in

Possibility of the Existence of Trapped Radiation near Mercury

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The possibility of the existence of radiation belts near a planet possessing an intrinsic magnetic field and located in a stellar plasma flow is considered using Mercury as an example. An analysis is performed both using Størmer’s theory of charged particle motion, in which not the specific trajectories of individual particles, but the regions of allowed motion in an axisymmetric field are considered, and by analyzing the trajectories. The existence of trapped radiation near Mercury is shown to be possible, and the criteria for the formation of a stable population of trapped particles are formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. S.-I. Akasofu and S. Chapman, Solar-Terrestrial Physics, Part 2 (Clarendon, Oxford, 1972).

    Google Scholar 

  2. I. I. Alexeev, E. S. Belenkaya, S. Yu. Bobrovnikov, et al., J. Geophys. Res. Space Phys. 113, A12210 (2008).

    Article  ADS  Google Scholar 

  3. I. I. Alexeev, E. S. Belenkaya, J. A. Slavin, et al., Icarus 209, 23 (2010).

    Article  ADS  Google Scholar 

  4. B. J. Anderson, M. H. Acuña, H. Korth, et al., Science (Washington, DC, U. S.) 321, 82 (2008).

    Article  ADS  Google Scholar 

  5. B. J. Anderson, M. H. Acuña, H. Korth, et al., Space Sci. Rev. 152, 307 (2010).

    Article  ADS  Google Scholar 

  6. B. J. Anderson, C. L. Johnson, H. Korth, et al., Science (Washington, DC, U. S.) 333, 1859 (2011).

    Article  ADS  Google Scholar 

  7. C. R. Clauer, I. I. Alexeev, E. S. Belenkaya, et al., J. Geophys. Res. Space Phys. 106, 25695 (2001).

    Article  ADS  Google Scholar 

  8. D. C. Delcourt, K. Seki, N. Terada, et al., Ann. Geophys. 23, 3389 (2005).

    Article  ADS  Google Scholar 

  9. D. C. Delcourt, T. E. Moore, and M.-C. H. Fok, Ann. Geophys. 28, 1467 (2010).

    Article  ADS  Google Scholar 

  10. S. Fatemi, A. R. Poppe, and S. Barabash, J. Geophys. Res. Space Phys. 125, e2019JA027706 (2020).

  11. K.-H. Glassmeier, H.-U. Auster, and U. Motschmann, Geophys. Res. Lett. 34, L22201 (2007).

    Article  ADS  Google Scholar 

  12. C. L. Johnson, M. E. Purucker, H. Korth, et al., J. Geophys. Res. 117, E00L14 (2012).

    Google Scholar 

  13. S. N. Kuznetsov and B. Yu. Yushkov, Plasma Phys. Rep. 28, 342 (2002).

    Article  ADS  Google Scholar 

  14. A. S. Lavrukhin, I. I. Alexeev, and I. V. Tyutin, Ann. Geophys. 37, 535 (2019).

    Article  ADS  Google Scholar 

  15. N. F. Ness, K. W. Behannon, R. P. Lepping, et al., Science (Washington, DC, U. S.) 185, 151 (1974).

    Article  ADS  Google Scholar 

  16. N. F. Ness, K. W. Behannon, R. P. Lepping, et al., Nature (London, U.K.) 255, 204 (1975).

    Article  ADS  Google Scholar 

  17. T. G. Northrop, Rev. Geophys. 1, 283 (1963).

    Article  ADS  Google Scholar 

  18. A. E. Potter, R. M. Killen, and T. H. Morgan, Planet. Space Sci. 47, 1441 (1999).

    Article  ADS  Google Scholar 

  19. A. E. Potter, R. M. Killen, K. P. Reardon, et al., Icarus 226, 172 (2013).

    Article  ADS  Google Scholar 

  20. J. V. Shebalin, Phys. Plasmas 11, 3472 (2004).

    Article  MathSciNet  ADS  Google Scholar 

  21. J. A. Slavin, S. M. Krimigis, M. H. Acuña, et al., Space Sci. Rev. 131, 133 (2007).

    Article  ADS  Google Scholar 

  22. J. A. Slavin, G. A. DiBraccio, D. J. Gershman, et al., J. Geophys. Res. Space Phys. 119, 8087 (2014).

    Article  ADS  Google Scholar 

  23. C. Størmer, The Polar Aurora (Clarendon, Oxford, UK, 1955).

    MATH  Google Scholar 

  24. B. A. Tverskoi, Dynamics of the Earth’s Radiation Belts (Nauka, Moscow, 1968) [in Russian].

    Google Scholar 

  25. B. M. Walsh, A. S. Ryou, D. G. Sibeck, et al., J. Geophys. Res. Space Phys. 118, 1992 (2013).

    Article  ADS  Google Scholar 

  26. R. M. Winslow, N. Lugaz, L. Philpott, et al., Astrophys. J. 889, 184 (2020).

    Article  ADS  Google Scholar 

  27. M. Yagi, K. Seki, Y. Matsumoto, et al., J. Geophys. Res. Space Phys. 115, A10253 (2010).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Yu.L. Sasunov and B.Yu. Yushkov for valuable discussions. We are grateful to the Ministry of Science and Higher Education of the Russian Federation for its support with grant 075-15-2020-780 (N13.1902.21.0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Lukashenko.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukashenko, A.T., Lavrukhin, A.S., Alexeev, I.I. et al. Possibility of the Existence of Trapped Radiation near Mercury. Astron. Lett. 46, 762–773 (2020). https://doi.org/10.1134/S1063773720110043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720110043

Keywords:

Navigation