Skip to main content
Log in

Estimation of an improved surrogate model in uncertainty quantification by neural networks

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Quantification of uncertainty of a technical system is often based on a surrogate model of a corresponding simulation model. In any application, the simulation model will not describe the reality perfectly, and consequently the surrogate model will be imperfect. In this article, we combine observed data from the technical system with simulated data from the imperfect simulation model in order to estimate an improved surrogate model consisting of multilayer feedforward neural networks, and we show that under suitable assumptions, this estimate is able to circumvent the curse of dimensionality. Based on this improved surrogate model, we show a rate of the convergence result for density estimates. The finite sample size performance of the estimates is illustrated by applying them to simulated data. The practical usefulness of the newly proposed estimates is demonstrated by using them to predict the uncertainty of a lateral vibration attenuation system with piezo-elastic supports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anthony, M., Bartlett, P. L. (1999). Neural networks and learning: Theoretical foundations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bauer, B., Kohler, M. (2019). On deep learning as a remedy for the curse of dimensionality in nonparametric regression. The Annals of Statistics, 47, 2261–2285.

    Article  MathSciNet  Google Scholar 

  • Bayarri, M. J., Berger, J. O., Cafeo, J., Garcia-Donato, G., Liu, F., Palomo, J., Parthasarathy, R. J., Paulo, R., Sacks, J., Walsh, D. (2007). Computer model validation with functional output. The Annals of Statistics, 35, 1874–1906.

    Article  MathSciNet  Google Scholar 

  • Bichon, B., Eldred, M., Swiler, M., Mahadevan, S., McFarland, J. (2008). Efficient global reliability analysis for nonlinear implicit performance functions. AIAA Journal, 46, 2459–2468.

    Article  Google Scholar 

  • Bott, A. K., Felber, T., Kohler, M. (2015). Estimation of a density in a simulation model. Journal of Nonparametric Statistics, 27, 271–285.

    Article  MathSciNet  Google Scholar 

  • Bourinet, J.-M., Deheeger, F., Lemaire, M. (2011). Assessing small failure probabilities by combined subset simulation and support vector machines. Structural Safety, 33, 343–353.

    Article  Google Scholar 

  • Bucher, C., Bourgund, U. (1990). A fast and efficient response surface approach for structural reliability problems. Structural Safety, 7, 57–66.

    Article  Google Scholar 

  • Choi, S.-K., Grandhi, R. V., Canfield, R. A. (2007). Reliability-based structural design. London: Springer.

    MATH  Google Scholar 

  • Coombs, C. H. (1964). A theory of data. New York: Wiley.

    Google Scholar 

  • Das, P.-K., Zheng, Y. (2000). Cumulative formation of response surface and its use in reliability analysis. Probabilistic Engineering Mechanics, 15, 309–315.

    Article  Google Scholar 

  • Deheeger, F., Lemaire, M. (2010). Support vector machines for efficient subset simulations: \(^2\)SMART method. In Proceedings of the 10th international conference on applications of statistics and probability in civil engineering (ICASP10), Tokyo, Japan.

  • Devroye, L., Felber, T., Kohler, M. (2013). Estimation of a density using real and artificial data. IEEE Transactions on Information Theory, 59(3), 1917–1928.

    Article  MathSciNet  Google Scholar 

  • Devroye, L., Györfi, L., Lugosi, G. (1996). A probabilistic theory of pattern recognition. New York: Springer.

    Book  Google Scholar 

  • Felber, T., Kohler, M., Krzyżak, A. (2015a). Adaptive density estimation based on real and artificial data. Journal of Nonparametric Statistics, 27, 1–18.

    Article  MathSciNet  Google Scholar 

  • Felber, T., Kohler, M., Krzyżak, A. (2015b). Density estimation with small measurement errors. IEEE Transactions on Information Theory, 61, 3446–3456.

    Article  MathSciNet  Google Scholar 

  • Goh, J., Bingham, D., Holloway, J. P., Grosskopf, M. J., Kuranz, C. C., Rutter, E. (2013). Prediction and computer model calibration using outputs from mulitfidelity simulators. Technometrics, 55, 501–512.

    Article  MathSciNet  Google Scholar 

  • Götz, B., Schaeffner, M., Platz, R., Melz, T. (2016). Lateral vibration attenuation of a beam with circular cross-section by a support with integrated piezoelectric transducers shunted to negative capacitances. Smart Materials and Structures, 25(9), 1–10.

    Article  Google Scholar 

  • Györfi, L., Kohler, M., Krzyżak, A., Walk, H. (2002). A distribution-free theory of nonparametric regression. New York: Springer.

    Book  Google Scholar 

  • Han, G., Santner, T. J., Rawlinson, J. J. (2009). Simultaneous determination of tuning and calibration parameters for computer experiments. Technometrics, 51, 464–474.

    Article  MathSciNet  Google Scholar 

  • Haykin, S. O. (2008). Neural networks and learning machines3rd ed. New York: Prentice-Hall.

    Google Scholar 

  • Hertz, J., Krogh, A., Palmer, R. G. (1991). Introduction to the theory of neural computation. Redwood City, CA: Addison-Wesley.

    Google Scholar 

  • Higdon, D., Gattiker, J., Lawrence, E., Jackson, C., Tobis, M., Pratola, M., Habib, S., Heitmann, K., Price, S. (2013). Computer model calibration using the ensemble kalman filter. Technometrics, 55, 488–500.

    Article  MathSciNet  Google Scholar 

  • Hurtado, J. (2004). Structural reliability—Statistical learning perspectives. Vol. 17 of Lecture Notes in Applied and Computational Mechanics. Berlin: Springer.

  • Kaymaz, I. (2005). Application of Kriging method to structural reliability problems. Strutural Safety, 27, 133–151.

    Article  Google Scholar 

  • Kennedy, M. C., O’Hagan, A. (2001). Bayesian calibration of computer models (with discussion). Journal of the Royal Statistical Society: Series B, 63, 425–464.

    Article  MathSciNet  Google Scholar 

  • Kim, S.-H., Na, S.-W. (1997). Response surface method using vector projected sampling points. Structural Safety, 19, 3–19.

    Article  Google Scholar 

  • Kohler, M., Krzyżak, A. (2017a). Nonparametric regression based on hierarchical interaction models. IEEE Transaction on Information Theory, 63, 1620–1630.

    Article  MathSciNet  Google Scholar 

  • Kohler, M., Krzyżak, A. (2017b). Improving a surrogate model in uncertainty quantification by real data. Submitted for publication.

  • Kohler, M., Krzyżak, A., Mallapur, S., Platz, R. (2018). Uncertainty quantification in case of imperfect models: A non-Bayesian approach. Scandinavian Journal of Statistics, 45(3), 729–752.

    Article  MathSciNet  Google Scholar 

  • Li, S., Götz, B., Schaeffner, M., Platz, R. (2017). Approach to prove the efficiency of the Monte Carlo method combined with the elementary effect method to quantify uncertainty of a beam structure with piezo–elastic supports. In Proceedings of the 2nd international conference on uncertainty quantification in computational sciences and engineering (UNCECOMP 2017) (pp. 441–455).

  • Papadrakakis, M., Lagaros, N. (2002). Reliability-based structural optimization using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng, 191, 3491–3507.

    Article  Google Scholar 

  • Parzen, E. (1962). On the estimation of a probability density function and the mode. Annals of Mathematical Statistics, 33, 1065–1076.

    Article  MathSciNet  Google Scholar 

  • Ripley, B. D. (2008). Pattern recognition and neural networks. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Ann Math Stat, 27, 832–837.

    Article  MathSciNet  Google Scholar 

  • Santner, T. J., Williams, B. J., Notz, W. I. (2003). The design and analysis of computer experiments. New York: Springer.

    Book  Google Scholar 

  • Schmidt-Hieber, J. (2017). Nonparametric regression using deep neural networks with ReLU activation function. arXiv:1708.06633v2.

  • Stone, C. J. (1985). Additive regression and other nonparametric models. Annals of Statistics, 13, 689–705.

    Article  MathSciNet  Google Scholar 

  • Tuo, R., Wu, C. F. J. (2015). Efficient calibration for imperfect computer models. Annals of Statistics, 43, 2331–2352.

    Article  MathSciNet  Google Scholar 

  • Wang, S., Chen, W., Tsui, K. L. (2009). Bayesian validation of computer models. Technometrics, 51, 439–451.

    Article  MathSciNet  Google Scholar 

  • Wong, R. K. W., Storlie, C. B., Lee, T. C. M. (2017). A frequentist approach to computer model calibration. Journal of the Royal Statistical Society, Series B, 79, 635–648.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG) for funding this project within the Collaborative Research Center 805. Furthermore, the authors would like to thank an anonymous Associate Editor and two anonymous referees for their invaluable comments improving an early version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Kersting.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 221 KB)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Götz, B., Kersting, S. & Kohler, M. Estimation of an improved surrogate model in uncertainty quantification by neural networks. Ann Inst Stat Math 73, 249–281 (2021). https://doi.org/10.1007/s10463-020-00748-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-020-00748-1

Keywords

Navigation