Skip to main content
Log in

Numerical moving mesh solution for the JKR adhesive contact between an incompressible layer and an axisymmetric rigid indenter

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Recent research extended the non-adhesive contact problems between an incompressible layer and a rigid indenter to adhesive cases in the limit of the Johnson–Kendall–Roberts (JKR) model, where it simply changes the boundary condition. The governing equation of this problem is in the form of Poisson’s equation, and there are two boundary conditions, one of which serves to determine the extent of the contact area. This makes it possible to develop a numerical solution of an adhesive thin incompressible layer indentation problem. For a numerical implementation, we have devised a finite element formulation with a moving mesh technique satisfying the slope boundary condition, which determines the actual extent of the contact area. We shall apply the proposed numerical method to an adhesive contact problem by a spherical rigid indenter to demonstrate the validity of the method. Furthermore, we will compare the characteristics of the JKR indentation solutions between a half-space and a thin incompressible layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chaudhury, M.K., Weaver, T., Hui, C.Y., Kramer, E.J.: Adhesive contact of cylindrical lens and a flat sheet. J. Appl. Phys. 80(1), 30–37 (1996). https://doi.org/10.1063/1.362819

    Article  Google Scholar 

  2. Lu, X.L., Mow, V.C.: Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40, 193–199 (2008). https://doi.org/10.1249/mss.0b013e31815cb1fc

    Article  Google Scholar 

  3. Vinckier, A., Semenza, G.: Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett. 430, 12–16 (1998). https://doi.org/10.1016/s0014-5793(98)00592-4

    Article  Google Scholar 

  4. Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B., Chadwick, R.S.: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002). https://doi.org/10.1016/S0006-3495(02)75620-8

    Article  Google Scholar 

  5. Oyen, M.L.: Nanoindentation of biological and biomimetic materials. Exp. Tech. 37(1), 73–87 (2013). https://doi.org/10.1111/j.1747-1567.2011.00716.x

    Article  MathSciNet  Google Scholar 

  6. Yao, H., Gao, H.: Mechanics of robust and releasable adhesion in biology: bottom-up designed hierarchical structures of gecko. J. Mech. Phys. Solids 54(6), 1120–1146 (2006). https://doi.org/10.1016/j.jmps.2006.01.002

    Article  MATH  Google Scholar 

  7. Glassmaker, N.J., Jagota, A., Hui, C.Y., Kim, J.: Design of biomimetic fibrillar interfaces: 1. Making contact. J. R. Soc. Interface 1, 35–48 (2004). https://doi.org/10.1098/rsif.2004.0004

    Article  Google Scholar 

  8. Guo, Z.J., Mcgruer, N., Adams, G.G.: Modeling, simulation and measurement of the dynamic performance of an ohmic contact, electrostatically actuated RF MEMS switch. J. Micromech. Microeng. 17(9), 1899–1909 (2007). https://doi.org/10.1088/0960-1317/17/9/019

    Article  Google Scholar 

  9. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971). https://doi.org/10.1098/rspa.1971.0141

    Article  Google Scholar 

  10. Yang, F.: Adhesive contact between a rigid axisymmetric indenter and an incompressible elastic thin film. J. Phys. D Appl. Phys. 35(20), 2614–2620 (2002). https://doi.org/10.1088/0022-3727/35/20/322

    Article  Google Scholar 

  11. Argatov, I.I., Mishuris, G.S., Popov, V.L.: Asymptotic modelling of the JKR adhesion contact for a thin elastic layer. Q. J. Mech. Appl. Mech. 69, 161–179 (2016). https://doi.org/10.1093/qjmam/hbw002

    Article  MathSciNet  MATH  Google Scholar 

  12. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  13. Barber, J.R.: Contact problems for the thin elastic layer. Int. J. Mech. Sci. 32, 129–132 (1990). https://doi.org/10.1016/0020-7403(90)90112-V

    Article  MATH  Google Scholar 

  14. Chadwick, R.S.: Axisymmetric indentation of a thin incompressible elastic layer. SIAM J. Appl. Math. 62, 1520–1530 (2002). https://doi.org/10.1137/S0036139901388222

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, F.: Axisymmetric indentation of an incompressible elastic thin film. J. Phys. D Appl. Phys. 36, 50–55 (2003). https://doi.org/10.1088/0022-3727/36/1/307

    Article  Google Scholar 

  16. COMSOL Multiphysics v. 5.5: COMSOL Reference Manual, pp. 1085–1112. COMSOL AB, Stockholm, Sweden (2019)

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (NRF-2020R1I1A3072373).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Ju Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, Y.J. Numerical moving mesh solution for the JKR adhesive contact between an incompressible layer and an axisymmetric rigid indenter. Acta Mech 232, 2297–2305 (2021). https://doi.org/10.1007/s00707-021-02963-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02963-0

Navigation