Skip to main content
Log in

Time and space-resolved laser-induced breakdown spectroscopy on molybdenum in air

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In the present work, laser-induced plasma (LIP) of Mo is studied using both time and space resolved laser-induced breakdown spectroscopy (LIBS) in air as a function of incident laser energy. For this a second harmonic Q-switched Nd:YAG laser having pulse width of 7 ns and repetition rate of 1 Hz is used. The Boltzmann plot method is employed to estimate the plasma temperature of LIP using MoI and MoII lines separately. The stark-broadened profile of MoI-313.2 nm is exploited to measure the electron density. The temporal study in the time delay range of 0.5–5.0 μs shows that both the parameters, decay with the increase in delay time but increases with the increase in laser energy. It is observed that the plasma temperature estimated for MoII lines is higher than that of the MoI lines during the initial stage of plasma formation, delay time of 0.5–1.0 μs, but at a later time scale, both these species are found to possess nearly the same values of the temperature, indicating the coexistence of thermal equilibrium among the Mo atoms and ions in LIP. Therefore, in the second part of the experiment, time-integrated spatial evolution of the LIP of Mo is studied at a fixed delay of 2 μs as a function of axial distance normal to the target. It is found that emission intensity (MoI and MoII both), plasma temperature, and electron density initially increase with the increase in distance from the target, attains maximum value and then falls down. The Mc-Whirter criteria is applied to test the validity of local thermodynamic equilibrium (LTE). The relaxation time and diffusion length are estimated in time and space resolved studies respectively to take care of the transient and inhomogeneous nature of the LIP. The optical thin condition of LIP is verified by employing the branching ratio method. From these studies, a suitable spatio-temporal is identified where the LTE and optically thin plasma condition hold along with a high signal to noise ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Cristoforetti, G. Lorenzetti, S. Legnaioli, V. Palleschi, Spectrochim. Acta, Part B 65(9–10), 787–796 (2010)

    Article  ADS  Google Scholar 

  2. J.D. Winefordner, I.B. Gornushkin, T. Correll, E. Gibb, B.W. Smith, N. Omenetto, J. Anal. At. Spectrom. 19(9), 1061–1083 (2004)

    Article  Google Scholar 

  3. L.J. Radziemski, D.A. Cremers, Laser-induced Plasmas and Applications (Wiley, 2006)

  4. K.J. Grant, G.L. Paul, Appl. Spectrosc. 44(8), 1349–1354 (1990)

    Article  ADS  Google Scholar 

  5. S. Harilal, P. Diwakar, N. LaHaye, M. Phillips, Spectrochim. Acta, Part B 111, 1–7 (2015)

    Article  ADS  Google Scholar 

  6. M. Autin, A. Briand, P. Mauchien, J. Mermet, Spectrochim. Acta, Part B 48(6–7), 851–862 (1993)

    Article  ADS  Google Scholar 

  7. M. Corsi, G. Cristoforetti, M. Giuffrida, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Spectrochim. Acta, Part B 59(5), 723–735 (2004)

    Article  ADS  Google Scholar 

  8. J. Freeman, S. Harilal, P. Diwakar, B. Verhoff, A. Hassanein, Spectrochim. Acta, Part B 87, 43–50 (2013)

    Article  ADS  Google Scholar 

  9. C. Gautier, P. Fichet, D. Menut, J.-L. Lacour, D. L’Hermite, J. Dubessy, Spectrochim. Acta, Part B 59(7), 975–986 (2004)

    Article  ADS  Google Scholar 

  10. X.L. Mao, M.A. Shannon, A.J. Fernandez, R.E. Russo, Appl. Spectrosc. 49(7), 1054–1062 (1995)

    Article  ADS  Google Scholar 

  11. O. Barthélemy, J. Margot, M. Chaker, M. Sabsabi, F. Vidal, T. Johnston, S. Laville, B. Le Drogoff, Spectrochim. Acta, Part B 60(7–8), 905–914 (2005)

    Article  ADS  Google Scholar 

  12. F. Colao, V. Lazic, R. Fantoni, S. Pershin, Spectrochim. Acta, Part B 57(7), 1167–1179 (2002)

    Article  ADS  Google Scholar 

  13. S. Amoruso, Appl. Phys. A 69(3), 323–332 (1999)

    Article  ADS  Google Scholar 

  14. Y.-I. Lee, S.P. Sawan, T.L. Thiem, Y.-Y. Teng, J. Sneddon, Appl. Spectrosc. 46(3), 436–441 (1992)

    Article  ADS  Google Scholar 

  15. M. Gondal, Y. Maganda, M. Dastageer, F. Al-Adel, and A. Naqvi, Study of temporal evolution of electron density and temperature for atmospheric plasma generated from fluid samples using laser induced breakdown spectroscopy. In: Electronics, Communications and Photonics Conference (SIECPC), 2013 Saudi International (IEEE, 2013), p. 1–4.

  16. F. Bredice, P.P. Martinez, C. Sánchez-Aké, M. Villagrán-Muniz, Spectrochim. Acta, Part B 107, 25–31 (2015)

    Article  ADS  Google Scholar 

  17. S. Harilal, C. Bindhu, R.C. Issac, V. Nampoori, C. Vallabhan, J. Appl. Phys. 82(5), 2140–2146 (1997)

    Article  ADS  Google Scholar 

  18. M.R. Joseph, N. Xu, V. Majidi, Spectrochim. Acta, Part B 49(1), 89–103 (1994)

    Article  ADS  Google Scholar 

  19. B. Le Drogoff, J. Margot, F. Vidal, S. Laville, M. Chaker, M. Sabsabi, T. Johnston, O. Barthélemy, Plasma Sources Sci. Technol. 13(2), 223 (2004)

    Article  ADS  Google Scholar 

  20. L.J. Radziemski, T.R. Loree, D.A. Cremers, N.M. Hoffman, Anal. Chem. 55(8), 1246–1252 (1983)

    Article  Google Scholar 

  21. J. Aguilera, J. Bengoechea, C. Aragón, Spectrochim. Acta, Part B 59(4), 461–469 (2004)

    Article  ADS  Google Scholar 

  22. L. Radziemski, T. Loree, Plasma Chem. Plasma Process. 1(3), 281–293 (1981)

    Article  Google Scholar 

  23. T.N. Piehler, F.C. DeLucia, C.A. Munson, B.E. Homan, A.W. Miziolek, K.L. McNesby, Appl. Opt. 44(18), 3654–3660 (2005)

    Article  ADS  Google Scholar 

  24. A. Mostako, A. Khare, Laser Part. Beams 30(4), 559–567 (2012)

    Article  ADS  Google Scholar 

  25. M. Akram, S. Bashir, M.S. Rafique, A. Hayat, K. Mahmood, Plasma Chem. Plasma Process. 37(1), 287–304 (2017)

    Article  Google Scholar 

  26. M. Wisse, L. Marot, A. Widdowson, M. Rubel, D. Ivanova, P. Petersson, R. Doerner, M. Baldwin, J. Likonen, E. Alves, Fusion Eng. Des. 89(2), 122–130 (2014)

    Article  Google Scholar 

  27. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012)

    Article  ADS  Google Scholar 

  28. E. Mal, R. Junjuri, M.K. Gundawar, A. Khare, J. Anal. At. Spectrom. 34, 319 (2019)

    Article  Google Scholar 

  29. NIST Atomic Spectra Database. https://physics.nist.gov/PhysRefData/ASD/lines_form.html

  30. Kurucz Database. https://www.cfa.harvard.edu/amp/ampdata/kurucz23/sekur.html

  31. P.J. Skrodzki, J.R. Becker, P.K. Diwakar, S.S. Harilal, A. Hassanein, Appl. Spectrosc. 70(3), 467–473 (2016)

    Article  ADS  Google Scholar 

  32. J. Freeman, P. Diwakar, S. Harilal, A. Hassanein, Spectrochim. Acta, Part B 102, 36–41 (2014)

    Article  ADS  Google Scholar 

  33. S. Zhang, X. Wang, M. He, Y. Jiang, B. Zhang, W. Hang, B. Huang, Spectrochim. Acta, Part B 97, 13–33 (2014)

    Article  ADS  Google Scholar 

  34. C. Aragón, J.A. Aguilera, Spectrochim. Acta, Part B 63(9), 893–916 (2008)

    Article  ADS  Google Scholar 

  35. J.B. Simeonsson, A.W. Miziolek, Appl. Opt. 32(6), 939–947 (1993)

    Article  ADS  Google Scholar 

  36. J.A. Aguilera, C. Aragón, Spectrochim. Acta, Part B 59(12), 1861–1876 (2004)

    Article  ADS  Google Scholar 

  37. E. Sternberg, N. Rodrigues, J. Amorim, Appl. Phys. B 122(1), 21 (2016)

    Article  ADS  Google Scholar 

  38. A. Elhassan, A. Giakoumaki, D. Anglos, G. Ingo, L. Robbiola, M. Harith, Spectrochim. Acta, Part B 63(4), 504–511 (2008)

    Article  ADS  Google Scholar 

  39. M. Akram, S. Bashir, M.S. Rafique, A. Hayat, K. Mahmood, A. Dawood, M. Bashir, Appl. Phys. A 119(3), 859–870 (2015)

    Article  ADS  Google Scholar 

  40. G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, N. Omenetto, Spectrochim. Acta, Part B 65(1), 86–95 (2010)

    Article  ADS  Google Scholar 

  41. T. Fujimoto, R. McWhirter, Phys. Rev. A 42(11), 6588 (1990)

    Article  ADS  Google Scholar 

  42. J.P. Singh, S.N. Thakur, Laser-Induced Breakdown Spectroscopy (Elsevier, 2007).

    Google Scholar 

  43. H. Hegazy, H.A. El-Ghany, S. Allam, T.M. El-Sherbini, Appl. Phys. B 110(4), 509–518 (2013)

    Article  ADS  Google Scholar 

  44. Q. Ma, V. Motto-Ros, W. Lei, M. Boueri, X. Bai, L. Zheng, H. Zeng, J. Yu, Spectrochim. Acta, Part B 65(11), 896–907 (2010)

    Article  ADS  Google Scholar 

  45. M. Hafez, M. Khedr, F. Elaksher, Y. Gamal, Plasma Sources Sci. Technol. 12(2), 185 (2003)

    Article  ADS  Google Scholar 

  46. W. Luo, X. Zhao, Q. Sun, C. Gao, J. Tang, H. Wang, W. Zhao, Pramana 74(6), 945–959 (2010)

    Article  ADS  Google Scholar 

  47. G. Abdellatif, H. Imam, Spectrochim. Acta, Part B 57(7), 1155–1165 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eshita Mal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mal, E., Junjuri, R., Gundawar, M.K. et al. Time and space-resolved laser-induced breakdown spectroscopy on molybdenum in air. Appl. Phys. B 127, 52 (2021). https://doi.org/10.1007/s00340-021-07598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07598-6

Navigation