Skip to main content

Advertisement

Log in

Analysis of mining-induced variation of the water table and potential benefits for ecological vegetation: a case study of Jinjitan coal mine in Yushenfu mining area, China

Analyse des variations de la surface piézométrique induites par l’exploitation minière et des bénéfices potentiels pour la végétation naturelle: le cas d’étude de la mine de charbon de Jinjitan dans la zone d’exploitation de Yushenfu, Chine

Análisis de la variación del nivel freático y de los beneficios potenciales para la ecología de la vegetación inducida por la minería: un estudio de caso de la mina de carbón de Jinjitan en la zona minera de Yushenfu, China

采矿引起的地下水位变化及生态植被的潜在效益分析:以中国榆神府矿区金鸡滩煤矿为例

Análise da variação do lençol freático induzida pela mineração e benefícios potenciais para a vegetação ecológica: um estudo de caso da mina de carvão de Jinjitan na área de mineração de Yushenfu, China

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The impact of high-intensity coal mining on water resources has drastically affected the local environment in the Yushenfu mining area, Northwest China. Many studies have ascertained that coal mining has caused reduction of the phreatic water level and vegetation death, which has deteriorated the fragile arid and semiarid ecosystems. However, at Jinjitan coal mine, it has been observed that the phreatic water level rose due to coal mining, which has been beneficial for the local ecology, especially the vegetation. In this study, the variation of the phreatic water table and its ecological effects were investigated by in-situ tests and remote sensing. The results suggest that the recovery of the permeability of the loess aquitard controls the vertical leakage of phreatic water, whereas horizontal recharge is controlled by land subsidence. An ecological impact evaluation, using the normalized difference vegetation index (NDVI), demonstrates that the vegetation is being gradually improved. Compared to a small improvement of ~9.7% in the unexploited area, a ~23.3% improvement occurred in the exploited area where low-density shrubs transformed to high-density shrubs and herbs. Emergence of phreatic water at the land surface in low-lying areas of the working faces may induce the formation of an oasis and wetland system in arid and semiarid areas. These findings could change the conventional negative impression around mining and improve ecological restoration practices.

Résumé

L’impact de l’exploitation intensive d’une mine de charbon sur les ressources en eau a affecté radicalement l’environnement local dans la zone d’exploitation de Yushenfu, Chine du Nord-Ouest. De nombreuses études ont établi que l’exploitation des mines de charbon a provoqué une baisse du niveau phréatique des eaux souterraines et la mort de la végétation, ce qui a détérioré les fragiles écosystèmes arides et semi-arides. Pourtant, à la mine de charbon de Jinjitan, on a observé que le niveau phréatique a augmenté du fait de l’exploitation du charbon, ce qui a été bénéfique pour l’écologie locale, en particulier pour la végétation. Dans la présente étude, les variations de la surface piézométrique et ses effets écologiques ont été étudiés à l’aide de tests in-situ et d’images satellitaires. Les résultats suggèrent que le rétablissement de la perméabilité de l’aquitard constitué par des lœss contrôle le drainage vertical de l’eau phréatique, tandis que la recharge horizontale est contrôlée par la subsidence du sol. Une évaluation de l’impact écologique, utilisant l’Indice Différentiel Normalisé de la Végétation (IDNV), montre que la végétation est en train de s’améliorer graduellement. En comparaison d’une petite amélioration de ~9.7% dans la zone inexploitée, une croissance de ~23.3% est intervenue dans la zone exploitée où des arbustes très clairsemés ont été remplacés par des arbustes et des plantes herbacées très denses. L’émergence d’eau phréatique à la surface du sol dans les parties basses des aires de travail peut générer la formation d’un système d’oasis et de zones humides au sein de zone arides et semi arides. Ces constatations pourraient modifier l’impression négative habituellement ressentie aux alentours d’une exploitation minière et améliorer les pratiques de restauration écologiques.

Resumen

El impacto de la minería del carbón de alta intensidad sobre los recursos hídricos ha afectado drásticamente al medio ambiente local en la zona minera de Yushenfu, en el noroeste de China. Muchos estudios han constatado que la minería del carbón ha provocado la profundización del nivel de agua freática y la desaparición de la vegetación, lo que ha deteriorado los frágiles ecosistemas áridos y semiáridos. Sin embargo, en la mina de carbón de Jinjitan, se ha observado que el nivel de agua freática se elevó debido a la minería del carbón, lo que ha sido beneficioso para la ecología local, especialmente para la vegetación. En este estudio, se investigó la variación del nivel freático y sus efectos ecológicos mediante pruebas in situ y teledetección. Los resultados sugieren que la recuperación de la permeabilidad del acuitardo de loess controla la filtración vertical del agua freática, mientras que la recarga horizontal está controlada por el hundimiento del terreno. Una evaluación del impacto ecológico, utilizando el índice de vegetación de diferencia normalizada (NDVI), demuestra que la vegetación está mejorando gradualmente. En comparación con una pequeña mejora de ~9.7% en la zona no explotada, se produjo una mejora de ~23.3% en la zona explotada, donde los arbustos de baja densidad se transformaron en arbustos y hierbas de alta densidad. La aparición de agua freática en la superficie del terreno en las zonas bajas de las zonas de explotación puede inducir la formación de un sistema de oasis y humedales en zonas áridas y semiáridas. Estos hallazgos podrían cambiar la impresión negativa convencional en torno a la minería y mejorar las prácticas de restauración ecológica.

摘要

高强度煤炭开采对水资源的影响已严重影响了中国西北榆神府矿区的当地环境。许多研究已经确定, 煤矿开采导致潜水水位的降低和植被的死亡, 这使脆弱的干旱和半干旱生态系统恶化了。然而, 在金鸡滩煤矿已经发现由于采煤而使潜水水位上升, 这有利于当地生态, 特别是植被。在这项研究中, 通过原位测试和遥感研究了潜水位的变化及其生态影响。结果表明, 黄土隔水层渗透率的恢复控制着潜水的垂直渗漏, 而水平补给则受地面沉降的控制。使用归一化植被指数(NDVI)进行的生态影响评估表明, 植被正在逐步改善。与未开发区的约9.7%的小幅改善相比, 在低密度灌木向高密度的灌木和草本转变的被开发区, 约有23.3%的改善。在工作面低洼地区的陆地表面出现潜水可能会在干旱和半干旱地区形成诱发的绿洲和湿地系统。这些发现可能会改变采矿业的传统负面印象, 并改善生态恢复做法。

Resumo

O impacto da mineração de carvão de alta intensidade sobre os recursos hídricos afetou drasticamente o meio ambiente local na área de mineração de Yushenfu, no noroeste da China. Muitos estudos constataram que a mineração de carvão causou redução do nível freático e morte da vegetação, o que deteriorou os frágeis ecossistemas áridos e semiáridos. Porém, na mina de carvão de Jinjitan, observou-se que o nível das águas freáticas aumentou devido à mineração de carvão, o que tem sido benéfico para a ecologia local, principalmente para a vegetação. Neste estudo, a variação do lençol freático e seus efeitos ecológicos foram investigados por meio de testes in situ e sensoriamento remoto. Os resultados sugerem que a recuperação da permeabilidade do aquitardo loess controla a perda vertical de água freática, enquanto a recarga horizontal é controlada pelo aluimento do solo. Uma avaliação de impacto ecológico, usando o índice de vegetação de diferença normalizada (NDVI), demonstra que a vegetação está sendo gradualmente melhorada. Comparado com uma pequena melhoria de ~9.7% na área não explorada, uma melhoria de ~23.3% ocorreu na área explorada onde arbustos de baixa densidade se transformaram em arbustos de alta densidade e ervas. A emergência de água freática na superfície da terra em áreas baixas das faces de trabalho pode induzir a formação de um oásis e sistema de páreas úmidas em áreas áridas e semiáridas. Essas descobertas podem mudar a impressão negativa convencional em torno da mineração e melhorar as práticas de restauração ecológica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Adhikary DP, Guo H (2015) Modelling of longwall mining-induced strata permeability change. Rock Mech Rock Eng 48(1):345–359

    Article  Google Scholar 

  • Bruns DA (2005) Macroinvertebrate response to land cover, habitat, and water chemistry in a mining-impacted river ecosystem: a GIS watershed analysis. Aquati Sci 67(4):403–423

    Article  Google Scholar 

  • Candeias C, Ávila PF, Ferreira SE, Paulo JT (2015) Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, central Portugal). Environ Monit Assess 187(3):135–158

    Article  Google Scholar 

  • CMDSC (2020) China Meteorological Administration website. http://data.cma.cn. Accessed 5 August 2020

  • Cooper DJ, Sanderson JS, Stannard DI, Groeneveld DP (2006) Effects of long-term water table drawdown on evapotranspiration and vegetation in an arid region phreatophyte community. J Hydrol 325:21–34

    Article  Google Scholar 

  • Dai GL, Xue XY, Niu C et al (2019) Disturbance characteristics of coal mining to the eco-phreatic flow field in adjacent regions (in Chinese). China Coal Soc 44(3):701–708

    Google Scholar 

  • Evans J, Geerken R (2004) Discrimination between climate and human-induced dryland degradation. J Arid Environ 57(4):535–554

    Article  Google Scholar 

  • Fan LM (2017) Scientific connotation of water-preserved mining (in Chinese). J China Coal Soc 42(1):27–35

    Google Scholar 

  • Fan LM (2019) Some scientific issues in water-preserved coal mining (in Chinese). J China Coal Soc 44(3):667–674

    Google Scholar 

  • Fan LM, Xiang MX, Peng J et al (2016) Groundwater response to intensive mining in ecologically fragile area (in Chinese). China Coal Soc 11:2672–2678

    Google Scholar 

  • Gu ZJ, Duan XW, Shi YD, Li Y, Pan X (2018) Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin. China Ecol Indic 93(10):54–64

    Article  Google Scholar 

  • Huang QX (2010) Impermeability of overburden rock in shallow buried coal seam and classification of water conservation mining (in Chinese). Chinese J Rock Mech Eng 29(S2):3622–3627

    Google Scholar 

  • Huang QX, Yu BN, Zhang WZ (2012) Study of downward crack closing of clay aquiclude in shallowly buried coal seam (in Chinese). J Min Saf Eng 2010(1):35–39

    Google Scholar 

  • Hoomehr S, Schwartz JS, Yoder DC (2015) Potential changes in rainfall erosivity under GCM climate change scenarios for the southern Appalachian region, USA. Catena 136:141–151

    Article  Google Scholar 

  • Jin XM, Schaepman ME, Clevers JGPW, Su ZB, Hu GC (2011) Groundwater depth and vegetation in the Ejina area, China. Arid Land Res Manag 25(2):194–199

    Article  Google Scholar 

  • Lei SG, Bian ZF, John LD, He X (2010) Spatio-temporal variation of vegetation in an arid and vulnerable coal mining region. Min Sci Technol 20:485–490

    Google Scholar 

  • Li WP, Ye GJ, Zhang L, Duan ZH, Zhai LJ (2000) Study on the engineering geological conditions of protected water resources during coal mining action in Yu-Shen-Fu mine area in the North Shanxi Province (in Chinese). J China Coal Soc 25(5):449–454

    Google Scholar 

  • Li T, Li WP, Chang JY, Du PP, Gao Y (2011) Permeability features of water-resistant clay layer in northern Shaanxi province while shallowly buried coal mining (in Chinese). J Min Saf Eng 28(1):127–131

    Google Scholar 

  • Li JJ, Peng SZ, Li Z (2017a) Detecting and attributing vegetation changes on China’s Loess Plateau. Agric For Meteorol 247:260–270

    Article  Google Scholar 

  • Li YR, Cao Z, Long HL, Liu YS, Li WJ (2017b) Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban-rural development: the case of Mu Us Sandy land, China. J Clean Prod 142:697–715

    Article  Google Scholar 

  • Li WP, Wang QQ, Li XQ (2017c) Reconstruction of aquifuge: the engineering geological study of N2 laterite located in key aquifuge concerning coal mining with water protection in Northwest China (in Chinese). J China Coal Soc 42(1):88–97

    Google Scholar 

  • Liu Y, Li WP, He JH, Liu SW, Cai LY, Cheng G (2018a) Application of Brillouin optical time domain reflectometry to dynamic monitoring of overburden deformation and failure caused by underground mining. Int J Rock Mech Min Sci 106:133–143

    Article  Google Scholar 

  • Liu SL, Li WP, Wang QQ (2018b) Zoning method for environmental engineering geological patterns in underground coal mining areas. Sci Total Environ 634:1064–1076

    Article  Google Scholar 

  • Liu Y, Liu QM, Li WP, Li T, He JH (2019a) Height of water-conducting fractured zone in coal mining in the soil–rock composite structure overburdens. Environ Earth Sci 78(242)

  • Liu SL, Li WP, Qiao W, Li XQ, Wang QQ, He JH (2019b) Zoning method for mining-induced environmental engineering geological patterns considering the degree of influence of mining activities on phreatic aquifer. J Hydrol. https://doi.org/10.1016/j.jhydrol.2019.124020

  • Liu SL, Li WP, Qiao W, Wang QQ, Hu YB, Wang ZK (2019c) Effect of natural conditions and mining activities on vegetation variations in arid and semiarid mining regions. Ecol Indic 103(8):331–345

    Article  Google Scholar 

  • Lowry CS, Loheide SP, Moore CE, Lundquist JD (2011) Groundwater controls on vegetation composition and patterning in mountain meadows. Water Resour Res 47(10). https://doi.org/10.1029/2010WR010086

  • Lv JJ, Wang XS, Zhou YX, Qian KZ, Wan L, Eamus D, Tao ZP (2013) Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China. Ecohydrology 6(1):142–149

    Article  Google Scholar 

  • Martinez BC, Jochum MAO, Calera A, Melia J (2009) Multi-sensor comparison of NDVI for a semi-arid environment in Spain. Inter J Remote Sens 30(5). https://doi.org/10.1080/01431160802509025

  • Ma XD, Fan LM, Zhang XT, Zhang HQ, Zhang YF, Shen T (2015) Driving force analysis for water and wetlands evolution at Yushenfu mining area (in Chinese). Coal Geol China 40(5):1126–1133

    Google Scholar 

  • Ma XD, Huang JY, Li JX et al (2019) Groundwater level threshold under the constrain of ecology security in mining area (in Chinese). China Coal Soc 44(3):675–680

    Google Scholar 

  • Miao XX, Wang A, Sun YJ, Wang LG, Pu H (2009) Research on basic theory of mining with water resources protection and application to arid and semi-arid mining areas (in Chinese). Chinese J Rock Mech Eng 28(2):217–227

    Google Scholar 

  • Qiao W, Li WP, Li T, Chang JY, Wang QQ (2017) Effects of coal mining on shallow water resources in semiarid regions: a case study in the Shennan mining area, Shaanxi, China. Mine Water Environ 36:104–113

    Article  Google Scholar 

  • Ran JC, Singh A, Sharma Y (2010) Dynamics of plant bioresources in Western Himalayan region of India watershed basin study. Curr Sci 98(2):192–203

    Google Scholar 

  • Sui WH, Hang Y, Ma L, Wu ZY, Zhou YJ, Long GQ, Wei LB (2015) Interactions of overburden failure zones due to multiple-seam mining using longwall caving. Bull Eng Geol Environ 74(3):1019–1035

    Article  Google Scholar 

  • Sun YJ, Zhang MF, Gao S et al (2017) Water-preserved mining technology and practice in typical high intensity mining area of China (in Chinese). J China Coal Soc 42(1):56–65

    Google Scholar 

  • Tang ZG, Ma JH, Peng HH, Wang SH, Wei JF (2017) Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang River Basin. Adv Space Res 60:969–979

    Article  Google Scholar 

  • Tzampoglou P, Loupasakis C (2018) Evaluating geological and geotechnical data for the study of land subsidence phenomena at the perimeter of the Amyntaio coalmine, Greece. Int J Min Sci Technol 28:601–612

    Article  Google Scholar 

  • Wang L, Wei SP, Wang QJ (2008) Effect of coal exploitation on groundwater and vegetation in the Yushenfu coal mine (in Chinese). China Coal Soc 33(12):1408–1414

    Google Scholar 

  • Wang QQ, Li WP, Pei YB, Lv CC (2019) Experimental study on permeability of mining-cracked N2 laterite (in Chinese). J Southwest Jiaotong Univ 54(1):91–96

    Google Scholar 

  • Wei J, Wu F, Yin H et al (2017) Formation and height of the interconnected fractures zone after extraction of thick coal seams with weak overburden in Western China. Mine Water Environ 36(1):59–66

    Article  Google Scholar 

  • Yang ZY, Wang WK, Huang JY, Duan L (2006) Research on buried depth of eco-safety about groundwater table in the blown-sand region of the northern Shaanxi Province (in Chinese). J Northwest Sci Tech Univ Agri For (Nat Sci Ed) 8:67–74

    Google Scholar 

  • Yang Z, Li WP, Pei YB, Qiao W, Wu YL (2018) Classification of the type of eco-geological environment of a coal mine district: a case study of an ecologically fragile region. J Clean Prod 174:1513–1526

    Article  Google Scholar 

  • Yang Z, Li WP, Li XQ, He JH (2019) Quantitative analysis of the relationship between vegetation and groundwater buried depth: a case study of a coal mine district in Western China. Ecol Indic 102:770–782

    Article  Google Scholar 

  • Zhu L, Xu GQ, Li Y, Tang LS, Niu ZR (2017) Relationships among plant species diversity, biomass, and the groundwater table in the Hailiutu River basin. Acta Ecol Sin 37(6):1912–1921

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for their useful comments.

Funding

Financial support for this work was provided by the Fundamental Research Funds of the State Key Program of National Natural Science of China (No. 41931284).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 371 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, W., Yang, Z. et al. Analysis of mining-induced variation of the water table and potential benefits for ecological vegetation: a case study of Jinjitan coal mine in Yushenfu mining area, China. Hydrogeol J 29, 1629–1645 (2021). https://doi.org/10.1007/s10040-021-02325-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02325-z

Keywords

Navigation