Skip to main content
Log in

Zero-and-one-inflated Poisson regression model

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, a zero-and-one-inflated Poisson (ZOIP) regression model is proposed. The maximum likelihood estimation (MLE) and Bayesian estimation for this model are investigated. Three estimation methods of the ZOIP regression model are obtained based on data augmentation method which is expectation-maximization (EM) algorithm, generalized expectation-maximization (GEM) algorithm and Gibbs sampling respectively. A simulation study is conducted to assess the performance of the proposed estimation for various sample sizes. Finally, an accidental deaths data set is analyzed to illustrate the practicability of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal DK, Gelfand AE, Citron-Pousty S (2002) Zero-inflated models with application to spatial count data. Environ Ecol Stat 9:341–355

    Article  MathSciNet  Google Scholar 

  • Akaike H, Gelfand AE, Citron-Pousty S (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  MathSciNet  Google Scholar 

  • Chen XD (2009) Bayesian analysis of semiparametric mixed-effects models for zero-inflated count data. Commun Stat Theory Methods 38:1815–1833

    Article  MathSciNet  Google Scholar 

  • Dagne GA (2010) Bayesian semiparametric zero-inflated Poisson model for longitudinal count data. Math Biosci 224:126–130

    Article  MathSciNet  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood estimation from incomplete data via the EM algorithm (with discussion). J R Stat Soc Ser B 39:1–38

    MATH  Google Scholar 

  • Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7:1–26

    Article  MathSciNet  Google Scholar 

  • Gelfand AE, Smith AFM (1990) Sampling based approaches to calculating marginal densities. J Am Stat Assoc 51:398–409

    Article  MathSciNet  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Dunson BD, Vehtari A, Rubin DB (2013) Bayesian data analysis, 3rd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  • Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell 6:721–741

    Article  Google Scholar 

  • George C, Edward IG (1992) Explaining the Gibbs sampler. Am Stat 46:167–174

    MathSciNet  Google Scholar 

  • Ghosh SK, Mukhopadhyay P, Lu JC (2006) Bayesian analysis of zero-inflated regression models. J Stat Plann Inference 136:1360–1375

    Article  MathSciNet  Google Scholar 

  • Gilks WR, Wild P (1992) Adaptive rejection sampling for Gibbs sampling. Appl Stat 41:337–348

    Article  Google Scholar 

  • Hunter DR, Lange K (2000) Quantile regression via an MM Algorithm. J Comput Gr Stat 9:60–77

    MathSciNet  Google Scholar 

  • Jansakul N, Hinde JP (2002) Score tests for Zero-In(ated Poisson models. Comput Stat Data Anal 40:75–96

    Article  Google Scholar 

  • Jung BC, Jhun M, Lee JW (2005) Bootstrap tests for overdispersion in a zero-inflated Poisson regression model. Biometrics 61:626–629

    Article  MathSciNet  Google Scholar 

  • Khoshgoftaar TM, Gao K, Szabo RM (2005) Comparing software fault predictions of pure and zero-inflated Poisson regression models. Int J Syst Sci 36:705–715

    Article  MathSciNet  Google Scholar 

  • Lambert D (1992) Zero-infated Poisson regression with application to defects in manufacturing. Technometrics 34:1–14

    Article  Google Scholar 

  • Lange K, Hunter DR, Yang I (2000) Optimization transfer using surrogate objective functions. J Comput Gr Stat 9:1–59

    MathSciNet  Google Scholar 

  • Liu WC, Tang YC, Xu AC (2018) A zero-and-one inflated Poisson model and its application. Stat Its Interface 11:339–351

    Article  MathSciNet  Google Scholar 

  • Lim HK, Li WK, Yu PL (2014) Zero-inflated Poisson regression mixture model. Comput Stat Data Anal 71:151–158

    Article  MathSciNet  Google Scholar 

  • Long DL, Preisser JS, Herring AH, Golin CE (2014) Zero-infated Poisson regression with application to defects in manufacturing. Stat Med 33:5151–5165

    Article  MathSciNet  Google Scholar 

  • Louis TA (1982) Finding the observed information matrix when using the EM algorithm. J R Stat Soc Ser B 44:226–233

    MathSciNet  MATH  Google Scholar 

  • Mullahy J (1986) Specification and testing of some modified count data models. J Econom 33:341–365

    Article  MathSciNet  Google Scholar 

  • Musio M, Sauleau EA, Buemi A (2010) Bayesian semiparametric ZIP models with space-time interactions: an application to cancer registry data. Math Med Biol 27:181–194

    Article  MathSciNet  Google Scholar 

  • Neelon B, Chung DJ (2017) The LZIP: a Bayesian latent factor model for correlated zero-inflated counts. Biometrics 73:185–196

    Article  MathSciNet  Google Scholar 

  • Ridout J, Hinde J, Demetrio GB (2001) A score test for testing a zero-inflated Poisson regression model against zero-inflated negative binomial alternatives. Biometrics 57:219–223

    Article  MathSciNet  Google Scholar 

  • Spiegelhalter DJ, Best NJ, Carlin BP (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc Ser B 64:583–639

    Article  MathSciNet  Google Scholar 

  • Tang YC, Liu WC, Xu AC (2017) Statistical inference for zero-and-one-inflated Poisson models. Stat Theory Relat Fields 1:216–226

    Article  Google Scholar 

  • Tierney L (1994) Markov chains for exploring posterior distributions (with discussions). Ann Stat 26:1701–1762

    Article  Google Scholar 

  • Vandenbroek J (1995) A score test for zero inflation in a Poisson distribution. Biometrics 51:738–743

    Article  MathSciNet  Google Scholar 

  • Wit E, Edwin vdh, Jan-Willem R (2012) All models are wrong...: an introduction to model uncertainty. Stat Neerl 66:217–236

    Article  MathSciNet  Google Scholar 

  • Wu CFJ (1983) On the convergence properties of the EM Algorithm. Ann Stat 11:95–103

    Article  MathSciNet  Google Scholar 

  • Xie FC, Lin JG, Wei BC (2014) Bayesian zero-inflated generalized Poisson regression model: estimation and case influence diagnostics. J Appl Stat 41:1383–1392

    Article  MathSciNet  Google Scholar 

  • Xu HY, Xie M, Goh TN (2014) Objective Bayes analysis of zero-inflated Poisson distribution with application to healthcare data. IIE Trans 46:843–852

    Article  Google Scholar 

  • Zhang C, Tian G-L, Ng K-W (2016) Properties of the zero-and-one inflated Poisson distribution and likelihood-based inference methods. Stat Its Interface 9:11–32

    Article  MathSciNet  Google Scholar 

  • Zhu H, Luo S, DeSantis SM (2017) Zero-inflated count models for longitudinal measurements with heterogeneous random effects. Stat Methods Med Res 26:1774–1786

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research is supported by the Natural Science Foundation of China (Nos. 11271136, 81530086, 11671303, 11201345, 11671303), the 111 Project of China (No. B14019), the Natural Science Foundation of Zhejiang Province (No. LY15G010006) and the China Postdoctoral Science Foundation (No. 2015M572598).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenchen Liu or Yincai Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A.1

Proof of Theorem 3.1

The proof depends on the smoothness of \(Q(\varvec{\eta },\varvec{\eta }^{(k)}) = E[\ell _{c}(\varvec{\eta }|{\varvec{Y}}, {\varvec{B}}_{1},{\varvec{B}}_{2})|{\varvec{Y}}, \varvec{\eta }^{(k)}]\). We rewrite

$$\begin{aligned} Q(\varvec{\eta },\varvec{\eta }^{(k)}) = Q_{1}(\varvec{\eta },\varvec{\eta }^{(k)}) + Q_{2}(\varvec{\eta },\varvec{\eta }^{(k)}) + Q_{3}(\varvec{\eta },\varvec{\eta }^{(k)}), \end{aligned}$$

where

$$\begin{aligned}&Q_{1}(\varvec{\eta },\varvec{\eta }^{(k)})=\sum _{i=1}^{n} E\bigg [(1-B_{1i})\big (Y_{i}{\varvec{z}}_{i}^{\mathrm {T}} {\varvec{\beta }}-\mathrm {e}^{{\varvec{z}}_{i}^{\mathrm {T}} {\varvec{\beta }}}\big )\big |{\varvec{Y}},\varvec{\eta }^{(k)}\bigg ],\\&Q_{2}(\varvec{\eta },\varvec{\eta }^{(k)})=\sum _{i=1}^{n} E\bigg [B_{1i}\varvec{\omega }_{1i}^{\mathrm {T}} {\varvec{\gamma }}_{1}-\ln \big (1+ \mathrm {e}^{\varvec{\omega }_{1i}^{\mathrm {T}} {\varvec{\gamma }}_{1}}\big )-(1-B_{1i})\ln (Y_{i}!)| {\varvec{Y}},\varvec{\eta }^{(k)}\bigg ], \end{aligned}$$

and

$$\begin{aligned} Q_{3}(\varvec{\eta },\varvec{\eta }^{(k)})=\sum _{i=1}^{n} E\bigg [B_{2i}\varvec{\omega }_{2i}^{\mathrm {T}} {\varvec{\gamma }}_{2}-\ln \big (1+\mathrm {e}^ {\varvec{\omega }_{2i}^{\mathrm {T}}{\varvec{\gamma }}_{2}}\big )\bigg | {\varvec{Y}},\varvec{\eta }^{(k)}\bigg ]. \end{aligned}$$

\(\square \)

Simple calculation yields

$$\begin{aligned} \begin{aligned}&Q_{1}(\varvec{\eta },\varvec{\eta }^{(k)})\\&\quad = \sum _{i=1}^{n}I\{Y_{i}=0\}\left[ \frac{(1-p_{1i}^{(k)}) P(V=0)}{p_{1i}^{(k)}p_{2i}^{(k)}+(1-p_{1i}^{(k)}) P(V_{i}^{(k)}=0)}\right] \bigg (Y_{i}{\varvec{z}}_{i}^{\mathrm {T}} {\varvec{\beta }}-\mathrm {e}^{{\varvec{z}}_{i}^{\mathrm {T}} {\varvec{\beta }}}\bigg )\\&\qquad +\sum _{i=1}^{n}I\{Y_{i}=1\}\left[ \frac{(1-p_{1i}^{(k)}) P(V=1)}{p_{1i}^{(k)}(1-p_{2i}^{(k)})+(1-p_{1i}^{(k)}) P(V_{i}^{(k)}=1)}\right] \bigg (Y_{i}{\varvec{z}}_{i}^{\mathrm {T}} {\varvec{\beta }}-\mathrm {e}^{{\varvec{z}}_{i}^{\mathrm {T}} {\varvec{\beta }}}\bigg )\\&\qquad +\sum _{i=1}^{n}I\{Y_{i}\ge 2\} \big (Y_{i}{\varvec{z}}_{i}^{\mathrm {T}} {\varvec{\beta }}-\mathrm {e}^{{\varvec{z}}_{i}^{\mathrm {T}} {\varvec{\beta }}}\big ), \end{aligned} \end{aligned}$$

which is continuous in \(\varvec{\eta }\) and \(\varvec{\eta }^{(k)}\). A similar conclusion can be applied to \(Q_{2}(\varvec{\eta },\varvec{\eta }^{(k)})\) and \(Q_{3}(\varvec{\eta },\varvec{\eta }^{(k)})\). It is easy to find that the Eq. (10) in Wu (1983) for \(Q(\varvec{\eta },\varvec{\eta }^{(k)})\) is correct. According to the GEM algorithm, it is easy to that

$$\begin{aligned}&\ell _{c}\bigg ({\varvec{\gamma }}_{1}^{(k+1)}\bigg |{\varvec{Y}}, {\varvec{B}}_{1}^{(k+1)},{\varvec{B}}_{2}^{(k+1)}\bigg )-\ell _{c} \bigg ({\varvec{\gamma }}_{1}^{(k)}\bigg |{\varvec{Y}},{\varvec{B}}_{1}^{(k+1)}, {\varvec{B}}_{2}^{(k+1)}\bigg )\nonumber \\&\quad \ge \bigg |\bigg |{\varvec{\gamma }}_{1}^{(k+1)} -{\varvec{\gamma }}_{1}^{(k)}\bigg |\bigg |^{2}/2, \end{aligned}$$
(13)
$$\begin{aligned} \nonumber \\&\ell _{c}\bigg ({\varvec{\gamma }}_{2}^{(k+1)}\bigg |{\varvec{Y}}, {\varvec{B}}_{1}^{(k+1)},{\varvec{B}}_{2}^{(k+1)}\bigg )-\ell _{c} \bigg ({\varvec{\gamma }}_{2}^{(k)}\bigg |{\varvec{Y}},{\varvec{B}}_{1}^{(k+1)}, {\varvec{B}}_{2}^{(k+1)}\bigg )\nonumber \\&\quad \ge \bigg |\bigg |{\varvec{\gamma }}_{2}^{(k+1)} -{\varvec{\gamma }}_{2}^{(k)}\bigg |\bigg |^{2}/2 \end{aligned}$$
(14)

and

$$\begin{aligned} \ell _{c}\bigg ({\varvec{\beta }}^{(k+1)}\bigg |{\varvec{Y}}, {\varvec{B}}_{1}^{(k+1)},{\varvec{B}}_{2}^{(k+1)}\bigg )&-\ell _{c}\bigg ({\varvec{\beta }}^{(k)}\bigg |{\varvec{Y}}, {\varvec{B}}_{1}^{(k+1)},{\varvec{B}}_{2}^{(k+1)}\bigg )\nonumber \\&\ge \bigg |\bigg |\bigg ({\varvec{\beta }}^{(k+1)}-{\varvec{\beta }}^{(k)}\bigg )\bigg |\bigg |^{2}/2 \end{aligned}$$
(15)

respectively. And according to Eqs. (13), (14), and (15), it is easy to find that \(||\varvec{\eta }^{(k+1)}-\varvec{\eta }^{(k)}||\rightarrow 0\) as \(k \rightarrow \infty \). So according to Theorem 2 and Theorem 5 in Wu (1983), the conclusion is obvious.

1.2 Appendix A.2

The full conditional distribution of \({\varvec{\beta }}, {\varvec{\gamma }}_1\) and \({\varvec{\gamma }}_2\) with Normal prior. After the data augmentation step, we have the joint posterior of \({\varvec{\beta }}\), \({\varvec{\gamma }}_{1}\) and \({\varvec{\gamma }}_{2}\) as follows:

$$\begin{aligned} \begin{aligned}&{\pi [{\varvec{\beta }},{\varvec{\gamma }}_{1}, {\varvec{\gamma }}_{2}|\text {rest},{\varvec{Y}}]} \propto \exp \left\{ \left( \sum _{i=1}^{n}(1-B_{1i})V_{i} {\varvec{z}}_{i}\right) ^{\mathrm {T}}{\varvec{\beta }}\right\} \exp \\&\quad \left\{ \left( \sum _{i=1}^{n}B_{1i}\varvec{\omega _{1i}}\right) ^{\mathrm {T}}\varvec{\gamma _{1}}\right\} \exp \left\{ \left( \sum _{i=1}^{n}B_{2i}\varvec{\omega }_{2i}\right) ^{\mathrm {T}}{\varvec{\gamma }}_{2}\right\} \\&\quad \prod _{i=1}^{n}\frac{\exp \{-(1-B_{1i})\exp {({\varvec{z}}_{i}^ {\mathrm {T}}{\varvec{\beta }})}\}}{ (1+\exp {(\varvec{\omega }_{1i}^{\mathrm {T}} {\varvec{\gamma }}_{1})})(1+\exp {(\varvec{\omega }_{2i} ^{\mathrm {T}}{\varvec{\gamma }}_{2})})} \times \Pi ({\varvec{\beta }},{\varvec{\gamma }}_{1}, {\varvec{\gamma }}_{2}), \end{aligned} \end{aligned}$$

where the \(\Pi ({\varvec{\beta }},{\varvec{\gamma }}_{1},{\varvec{\gamma }}_{2})\) is the prior of the parameters \({\varvec{\beta }}, {\varvec{\gamma }}_{1}\) and \({\varvec{\gamma }}_{2}\). Let \(N({\varvec{\beta }}_{0},\sigma _{\beta }{\varvec{I}}_{q})\), \(N({\varvec{\gamma }}_{01},\sigma _{\gamma _{1}}{\varvec{I}}_{r1})\) and \(N({\varvec{\gamma }}_{02},\sigma _{\gamma _{2}}{\varvec{I}}_{r2})\) be the priors for parameters \({\varvec{\beta }}, {\varvec{\gamma }}_{1}\) and \({\varvec{\gamma }}_{2}\) respectively and assume that they are mutually independent. The full conditional distributions of \({\varvec{\beta }}\), \({\varvec{\gamma }}_{1}\) and \({\varvec{\gamma }}_{2}\) are not standard distributions. Their densities are as follows:

$$\begin{aligned}&{\pi [{\varvec{\beta }}|\text {rest},{\varvec{Y}}]}\propto (\sigma _{\beta })^{-q}\exp \left\{ -\left( \frac{1}{2}\sigma _{\beta }^{-2}\right) ({\varvec{\beta }}-{\varvec{\beta }}_{0})^{\mathrm {T}} ({\varvec{\beta }}-{\varvec{\beta }}_{0})\right\} \nonumber \\&\quad \times \exp \left\{ \left( \sum _{i=1}^{n}(1-B_{1i})V_{i}{\varvec{z}}_{i} \right) ^{\mathrm {T}} {\varvec{\beta }}\right\} \prod _{i=1}^{n}\exp {\left\{ -(1-B_{1i})\exp {\bigg ({\varvec{z}}_{i}^ {\mathrm {T}}{\varvec{\beta }}\big )}\right\} }, \end{aligned}$$
(16)
$$\begin{aligned}&{\pi [{\varvec{\gamma }}_{1}|\text {rest},{\varvec{Y}}]}\propto (\sigma _{\gamma _{1}})^{-r_{1}}\exp \left\{ -\left( \frac{1}{2} \sigma _{\gamma _{1}} ^{-2}\right) ({\varvec{\gamma }}_{1}-{\varvec{\gamma }}_{01})^{\mathrm {T}} ({\varvec{\gamma }}_{1}-{\varvec{\gamma }}_{01})\right\} \nonumber \\&\quad \times \exp \left\{ \left( \sum _{i=1}^{n}B_{1i}\varvec{\omega }_{1i} \right) ^{\mathrm {T}} {\varvec{\gamma }}_{1}\right\} \prod _{i=1}^{n}\bigg (1+\exp {\bigg (\varvec{\omega }_{1i}^{\mathrm {T}} {\varvec{\gamma }}_{1}\bigg )}\bigg )^{-1} \end{aligned}$$
(17)

and

$$\begin{aligned} \begin{aligned}&{\pi [{\varvec{\gamma }}_{2}|\text {rest},{\varvec{Y}}]}\propto (\sigma _{\gamma _{2}})^{-r_{2}}\exp \left\{ -\left( \frac{1}{2}\sigma _{\gamma _{2}}^ {-2}\right) ({\varvec{\gamma }}_{2}-{\varvec{\gamma }}_{02})^{\mathrm {T}} ({\varvec{\gamma }}_{2}-{\varvec{\gamma }}_{02})\right\} \\&\quad \times \exp \left\{ \left( \sum _{i=1}^{n}B_{2i}\varvec{\omega }_{2i}\right) ^{\mathrm {T}} {\varvec{\gamma }}_{2}\right\} \prod _{i=1}^{n}\bigg (1+\exp {\bigg (\varvec{\omega }_{2i}^{\mathrm {T}} {\varvec{\gamma }}_{2}\bigg )}\bigg )^{-1}. \end{aligned} \end{aligned}$$
(18)

It is also easy to get the second order partial derivative of \({\pi [{\varvec{\beta }}|\text {rest},{\varvec{Y}}]}\),

$$\begin{aligned} \frac{\partial ^{2} {\pi [{\varvec{\beta }}|\text {rest},{\varvec{Y}}]}}{\partial {\varvec{\beta }}\partial {\varvec{\beta }}^{T}} =\frac{1}{2}\sigma _{\beta }^{-2}{\varvec{I}}_{q}+\sum _{i=1}^{n} (1-B_{1i})\exp ({\varvec{z}}_{i}^{T}{\varvec{\beta }}) {\varvec{z}}_{i}{\varvec{z}}_{i}^{T}>0. \end{aligned}$$

So \({\pi [{\varvec{\beta }}|\text {rest},{\varvec{Y}}]}\) are log-concave. The log-concave property of conditional densities \({\pi [{\varvec{\gamma }}_{1}|\text {rest},{\varvec{Y}}]}\) and \({\pi [{\varvec{\gamma }}_{2}|\text {rest},{\varvec{Y}}]}\) can be proved similarly. So ARS can be used to sample \({\varvec{\beta }}\), \({\varvec{\gamma }}_{1}\) and \({\varvec{\gamma }}_{2}\) from their respective full conditional distributions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Tang, Y. & Xu, A. Zero-and-one-inflated Poisson regression model. Stat Papers 62, 915–934 (2021). https://doi.org/10.1007/s00362-019-01118-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01118-7

Keywords

Navigation