Skip to main content
Log in

The Berry–Esseen type bounds of the weighted estimator in a nonparametric model with linear process errors

  • Regular Article
  • Published:
Statistical Papers Aims and scope Submit manuscript

Abstract

In this paper, the Berry–Esseen type bounds of the weighted estimator in a nonparametric regression model are investigated under some mild conditions when random errors are from a linear process generated by \(\varphi \)-mixing random variables. In particular, the rate of uniform normal approximation is near to \(O(n^{-\frac{3}{16}})\) by the choice of some constants, which generalizes and improves the corresponding results of Li et al. (Stat Probab Lett 81:103–110, 2011) and Ding et al. (J Inequal Appl 2018:10, 2018). Finally, the simulation study is provided to verify the validity of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Babu GJ, Ghosh M, Singh K (1978) On rates of convergence to normality for \(\varphi \)-mixing processes. Sankhya A 40(3):278–293

    MathSciNet  MATH  Google Scholar 

  • Billingsley P (1968) Convergence of probability measures. Wiley, New York

    MATH  Google Scholar 

  • Chen X (2012) Asymptotic properties for estimates of nonparametric regression model with martingale difference errors. Stat J Theor Appl Stat 46(5):687–696

    MathSciNet  MATH  Google Scholar 

  • Chen PY, Hu TC, Volodin A (2009) Limiting behavior of moving average processes under \(\varphi \)-mixing assumption. Stat Probab Lett 79:105–111

    Article  Google Scholar 

  • Chen ZY, Wang HB, Wang XJ (2016) The consistency for the estimator of nonparametric regression model based on martingale difference errors. Stat Pap 57(2):451–469

    Article  MathSciNet  Google Scholar 

  • Ding LW, Chen P, Li YM (2018) Berry-Esseen bounds of weighted kernel estimator for a nonparametric regression model based on linear process errors under a LNQD sequence. J Inequal Appl 2018:10

    Article  MathSciNet  Google Scholar 

  • Dobrushin RL (1956) The central limit theorem for non-stationary Markov chain. Theory Probab Appl 1:72–88

    MathSciNet  MATH  Google Scholar 

  • Georgiev AA (1985) Local properties of function fitting estimates with applications to system identification. In: Grossmann W, Pflug G, Vincze I, Wertz W (eds) Mathematical statistics and applications. Proceedings of the 4th Pannonian symposium on mathematical statistics, 4–10 (September 1983), Bad Tatzmannsdorf, Austria. Riedel, Dordrecht, pp 141–151

  • Hu SH, Wang XJ (2008) Large deviations for some dependent sequences. Acta Math Sci B 28(2):295–300

    Article  MathSciNet  Google Scholar 

  • Kiesel R (1998) Strong laws and summability for \(\varphi \)-mixing sequences of random variables. J Theor Probab 11(1):209–224

    Article  MathSciNet  Google Scholar 

  • Kim TS, Ko MH (2008) Complete moment convergence of moving average processes under dependence assumptions. Stat Probab Lett 78:839–846

    Article  MathSciNet  Google Scholar 

  • Kumar P (1972) On the Bahadur representation of sample quantiles for sequences of \(\phi \)-mixing random variables. J Multivar Anal 2:77–95

    Article  MathSciNet  Google Scholar 

  • Li YM, Yin CM, Wei CD (2008) The asymptotic normality for \(\varphi \)-mixing dependent of wavelet regression function estimator. Acta Math Appl Sin A 31(6):1046–1055

    MATH  Google Scholar 

  • Li YM, Wei CD, Xing GD (2011) Berry-Esseen bounds for wavelet estimator in a regression model with linear process errors. Stat Probab Lett 81:103–110

    Article  MathSciNet  Google Scholar 

  • Liang HY, Fan GL (2009) Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors. J Multivar Anal 100(1):1–15

    Article  MathSciNet  Google Scholar 

  • Liang HY, Jing BY (2005) Asymptotic properties for estimates of nonparametric regression models based on negatively associated sequences. J Multivar Anal 95(2):227–245

    Article  MathSciNet  Google Scholar 

  • Liang HY, Li YY (2008) A Berry-Esseen type bound of regression estimator based on linear process errors. J Korean Math Soc 45(6):1753–1767

    Article  MathSciNet  Google Scholar 

  • Liang HY, Li DL, Miao TX (2016) Berry-Esseen type bound of conditional mode estimation under truncation and strong mixing assumptions. Commun Stat Theory Methods 45(17):5077–5097

    Article  MathSciNet  Google Scholar 

  • Liu YX, Niu SL, Liang HY (2017) Berry-Esseen bounds of recursive kernel estimator of density under strong mixing assumptions. Bull Korean Math Soc 54:343–358

    Article  MathSciNet  Google Scholar 

  • Lu CR, Lin ZY (1997) Limit theory for mixing dependent sequences. Science Press of China, Beijing

    Google Scholar 

  • Petrov VV (1995) Limit theory for probability theory. Oxford University Press, New York

    Google Scholar 

  • Roussas GG, Tran LT, Ioannides DA (1992) Fixed design regression for time series: asymptotic normality. J Multivar Anal 40(2):262–291

    Article  MathSciNet  Google Scholar 

  • Shen AT (2016) Complete convergence for weighted sums of END random variables and its application to nonparametric regression models. J Nonparametric Stat 28(4):702–715

    Article  MathSciNet  Google Scholar 

  • Shen AT, Wang XH, Ling JM (2014a) On complete convergence for non-stationary \(\varphi \)- mixing random variables. Commun Stat Theory Methods 43(22):4856–4866

    Article  Google Scholar 

  • Shen AT, Wang XH, Li XQ (2014b) On the rate of complete convergence for weighted sums of arrays of rowwise \(\varphi \)-mixing random variables. Commun Stat Theory Methods 43(13):2714–2725

    Article  MathSciNet  Google Scholar 

  • Shen AT, Zhang Y, Volodin A (2015) Applications of the Rosenthal-type inequality for negatively superadditive dependent random variables. Metrika 78(3):295–311

    Article  MathSciNet  Google Scholar 

  • Tran L, Roussas G, Yakowitz S, Truong VB (1996) Fixed design regression for linear time series. Ann Stat 24(3):975–991

    Article  MathSciNet  Google Scholar 

  • Utev SA (1990) The central limit theorem for \(\varphi \)-mixing arrays of random variables. Theory Probab Appl 35(1):131–139

    Article  MathSciNet  Google Scholar 

  • Wang XJ, Si ZY (2015) Complete consistency of the estimator of nonparametric regression model under ND sequence. Stat Pap 56(3):585–596

    Article  MathSciNet  Google Scholar 

  • Yang SC (1995) Almost sure convergence of weighted sums of mixing sequence. J Syst Sci Math Sci 15(3):254–265

    MATH  Google Scholar 

  • Yang SC, Li YM (2006) Uniformly asymptotic normality of the regression weighted estimator for strong mixing samples. Acta Math Sin (Chin Ser) 49(5):1163–1170

    MathSciNet  MATH  Google Scholar 

  • Yang WZ, Wang XJ, Li XQ, Hu SH (2012) Berry-Esseen bound of sample quantiles for \(\varphi \)-mixing random variables. J Math Anal Appl 388:451–462

    Article  MathSciNet  Google Scholar 

  • Zhou XC (2010) Complete moment convergence of moving average processes under \(\varphi \)-mixing assumptions. Stat Probab Lett 80(5–6):285–292

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the National Natural Science Foundation of China (11671012, 11871072, 11701004, 11701005), the Natural Science Foundation of Anhui Province (1808085QA03,1908085QA01), the Provincial Natural Science Research Project of Anhui Colleges (KJ2017A027, KJ2018B16), the Scientific Research Foundation Funded Project of Chuzhou University (2018qd01) and the Scientific Research Project of Chuzhou University (2015PY01, 2017qd16).

Appendix

Appendix

Lemma A.1

(cf. Liang and Fan 2009, Lemma 3.1) Let X and \(Y_1,Y_2,\ldots ,Y_m\) be random variables. Then for positive numbers \(a_1,a_2,\ldots ,a_m\), we have

$$\begin{aligned} \sup _{u}\left| P\left( X+\sum _{i=1}^mY_i\le u\right) -\Phi (u)\right| \le \sup _{u}\left| P(X\le u)-\Phi (u)\right| +\sum _{i=1}^{m}\frac{a_i}{\sqrt{2\pi }}+\sum _{i=1}^{m}P(|Y_i|>a_i). \end{aligned}$$

Lemma A.2

(cf. Lu and Lin 1997, Lemma 1.2.8) Let \(\{X_n,n\ge 1\}\) be a sequence of \(\varphi \)-mixing random variables. Let \(X\in L_p({\mathcal {F}}_1^{k})\), \(Y\in L_q({\mathcal {F}}_{k+n}^{\infty })\), \(p\ge 1\), \(q\ge 1\) and \(1/p+1/q=1\). Then

$$\begin{aligned} |EXY-EXEY|\le 2(\varphi (n))^{1/p}(E|X|^p)^{1/p}(E|Y|^q)^{1/q}. \end{aligned}$$

Lemma A.3

(cf. Petrov 1995, Theorem 5.7) Let \(X_1,X_2,\ldots ,X_n\) be independent random variables with \(EX_j=0\) and \(E|X_j|^{2+\delta }<\infty \) for some \(0<\delta \le 1\) and \(j=1,2,\ldots ,n\). Denote \(B_n=\sum \nolimits _{j=1}^n \text {Var} X_j\), then

$$\begin{aligned} \sup _{x}\left| P\left( \sum _{j=1}^nX_j\le x\right) -\Phi (x)\right| \le CB_n^{-1-\delta /2}\sum _{j=1}^n E|X_j|^{2+\delta }. \end{aligned}$$

Lemma A.4

(cf. Yang 1995, Lemma 2) Let \(\{X_n,n\ge 1\}\) be a sequence of \(\varphi \)-mixing random variables with \(EX_j=0\). If \(\sum \nolimits _{j=1}^{\infty }\varphi ^{1/2}(j)<\infty \) and \(E|X_j|^q<\infty \) for \(q\ge 2\) and \(j=1,2,\ldots \), then for each \(n\ge 1\),

$$\begin{aligned} E\left| \sum _{j=1}^n X_j\right| ^q\le \left\{ \sum _{j=1}^nE|X_j|^q+\left( \sum _{j=1}^nEX_j^2\right) ^{q/2}\right\} \end{aligned}$$

Lemma A.5

(cf. Li et al. 2008, Lemma 3.4) Let \(\{X_n,n\ge 1\}\) be a sequence of \(\varphi \)-mixing random variables. Suppose that p and q are two positive integers. Set \(\eta _l=:\sum \nolimits _{j=(l-1)(p+q)+1}^{(l-1)(p+q)+p}X_j\) for \(1\le l\le k\). Then

$$\begin{aligned} \left| E\exp \left\{ it\sum _{l=1}^{k}\eta _l\right\} -\prod _{l=1}^k E\exp (it\eta _l)\right| \le C|t|\varphi (q)\sum _{l=1}^k E|\eta _l|. \end{aligned}$$

Proof of Lemma 5.1

It follows from the definition of \(S_{1n}^{''}\), Lemma A.4, \(Ee_0^2<\infty \) and (\(A_1\))–(\(A_4\)) that

$$\begin{aligned} E(S_{1n}^{''})^2\le & {} \sum _{m=1}^{k}\sum _{i=l_m}^{l_m+q-1}E Z_{ni}^2\nonumber \\\le & {} C\sum _{m=1}^{k}\sum _{i=l_m}^{l_m+q-1}\sigma _n^{-2}\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}w_{nj}(x)\psi _{j-i}\right) ^2\nonumber \\\le & {} C\sum _{m=1}^{k}\sum _{i=l_m}^{l_m+q-1} \omega _n\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}|\psi _{j-i}|\right) ^2\nonumber \\\le & {} Ckq\omega _n\le Cnqp^{-1}\omega _n=C\gamma _{1n}. \end{aligned}$$
(6.1)

Similar to (6.1), we have

$$\begin{aligned} E(S_{1n}^{'''})^2= & {} E\left( \sum _{i=k(p+q)+1-n}^{2n}Z_{ni}\right) ^2\nonumber \\\le & {} \sum _{i=k(p+q)+1-n}^{2n}E Z_{ni}^2\nonumber \\\le & {} C(3n-k(p+q))\omega _n\le C p\omega _n=C\gamma _{2n}, \end{aligned}$$
(6.2)

and

$$\begin{aligned} ES_{2n}^2= & {} E\left( \sigma _n^{-1}\sum _{i=1}^n w_{ni}(x)\sum _{j: |j|>n}\psi _j e_{i-j}\right) ^2\nonumber \\= & {} E\left| \sigma _n^{-1}\sum _{i_1=1}^n w_{ni_1}(x)\sum _{j_1: |j_1|>n}\psi _{j_1} e_{i_1-j_1}\right| \left| \sigma _n^{-1}\sum _{i_2=1}^n w_{ni_2}(x)\sum _{j_2: |j_2|>n}\psi _{j_2} e_{i_2-j_2}\right| \nonumber \\\le & {} CE\left\{ \sum _{i_1=1}^n\sum _{i_2=1}^n |w_{ni_2}(x)|\cdot \left| \sum _{j_1: |j_1|>n}\psi _{j_1} e_{i_1-j_1}\right| \cdot \left| \sum _{j_2: |j_2|>n}\psi _{j_2} e_{i_2-j_2}\right| \right\} \nonumber \\\le & {} Cn\left( \sum _{j: |j|>n}|\psi _{j}|\right) ^2=C\gamma _{3n}. \end{aligned}$$
(6.3)

This completes the proof of Lemma 5.1. \(\square \)

Proof of Lemma 5.2

It is easy to see that

$$\begin{aligned} E(S_{1n}^{'})^2= & {} E\left( \sum _{m=1}^{k}y_{nm}\right) ^2\\= & {} \sum _{m=1}^{k}E y_{nm}^2+2\sum _{1\le i<j \le k}\text {Cov}(y_{ni},y_{nj})\\=: & {} s_n^2+2\Gamma _n, \end{aligned}$$

thus,

$$\begin{aligned} |s_n^2-1|\le |E(S_{1n}^{'})^2-1|+2|\Gamma _n|. \end{aligned}$$
(6.4)

Noting that \(ES_n^2=1\), we have

$$\begin{aligned} E(S_{1n}^{'})^2= & {} E[S_n-(S_{1n}^{''}+S_{1n}^{'''}+S_{2n})]^2\\= & {} 1+E(S_{1n}^{''}+S_{1n}^{'''}+S_{2n})^2-2ES_n(S_{1n}^{''}+S_{1n}^{'''}+S_{2n}). \end{aligned}$$

Hence, by \(C_r\) inequality, Hölder’s inequality, \(ES_n^2=1\) and Lemma 5.1, we have

$$\begin{aligned} |E(S_{1n}^{'})^2-1|\le & {} E(S_{1n}^{''}+S_{1n}^{'''}+S_{2n})^2+2E|S_n(S_{1n}^{''}+S_{1n}^{'''}+S_{2n})|\nonumber \\\le & {} E(S_{1n}^{''}+S_{1n}^{'''}+S_{2n})^2+2\left( E|S_nS_{1n}^{''}|+E|S_nS_{1n}^{'''}|+E|S_nS_{2n}|\right) \nonumber \\\le & {} 3\left[ E(S_{1n}^{''})^2+E(S_{1n}^{'''})^2+ES_{2n}^2\right] \nonumber \\&+\,2\left[ \left( E(S_{1n}^{''})^2\right) ^{1/2}+\left( E(S_{1n}^{'''})^2\right) ^{1/2}+\left( ES_{2n}^2\right) ^{1/2}\right] \nonumber \\\le & {} C(\gamma _{1n}^{1/2}+\gamma _{2n}^{1/2}+\gamma _{3n}^{1/2}). \end{aligned}$$
(6.5)

From Lemma A.2, (\(A_1\)), (\(A_4\)) and (\(A_2\)), we have

$$\begin{aligned} |\Gamma _n|\le & {} \sum _{1\le i<j \le k}|\text {Cov}(y_{ni},y_{nj})|\nonumber \\\le & {} \sum _{1\le i<j \le k}\sum _{s=k_i}^{k_i+p-1}\sum _{t=k_j}^{k_j+p-1}|\text {Cov}(Z_{ns},Z_{nt})|\nonumber \\\le & {} \sum _{i=1}^{k-1}\sum _{s=k_i}^{k_i+p-1}\sum _{j=i+1}^{k}\sum _{t=k_j}^{k_j+p-1}\sum _{u=\max \{1,s-n\}}^{\min \{n,s+n\}}\sum _{v=\max \{1,t-n\}}^{\min \{n,t+n\}}\sigma _n^{-2}|w_{nu}(x)w_{nv}(x)|\cdot |\psi _{u-s}\psi _{v-t}|\cdot |\text {Cov}(e_s,e_t)|\nonumber \\\le & {} C\sum _{i=1}^{k-1}\sum _{s=k_i}^{k_i+p-1}\sum _{u=\max \{1,s-n\}}^{\min \{n,s+n\}}|w_{nu}(x)|\cdot |\psi _{u-s}|\sum _{j=i+1}^{k}\sum _{t=k_j}^{k_j+p-1}\varphi ^{1/2}(t-s)\sum _{v=\max \{1,t-n\}}^{\min \{n,t+n\}}|\psi _{v-t}|\nonumber \\\le & {} C\sum _{i=1}^{k-1}\sum _{s=k_i}^{k_i+p-1}\sum _{u=\max \{1,s-n\}}^{\min \{n,s+n\}}|w_{nu}(x)|\cdot |\psi _{u-s}|\cdot \sum _{t:|t-s|\ge q}\varphi ^{1/2}(t-s)\nonumber \\\le & {} C u(q)\sum _{i=1}^{k-1}\sum _{s=k_i}^{k_i+p-1}\sum _{u=1}^{n}|w_{nu}(x)|\cdot |\psi _{u-s}|\nonumber \\\le & {} Cu(q). \end{aligned}$$
(6.6)

Therefore, the desired result follows from (6.5) and (6.6) immediately. \(\square \)

Proof of Lemma 5.3

By Lemma A.3, we have

$$\begin{aligned} \sup _{u}\left| P\left( T_n/s_n\le u\right) -\Phi (u)\right| \le C\sum _{m=1}^k E|\zeta _{nm}|^{2+\delta }/s_n^{2+\delta }. \end{aligned}$$
(6.7)

According to Lemma A.4, (\(A_1\)), (\(A_2\)) and (\(A_4\)), it follows that

$$\begin{aligned}&\sum _{m=1}^k E|\zeta _{nm}|^{2+\delta }\\&\quad =\sum _{m=1}^k E|y_{nm}|^{2+\delta }=\sum _{m=1}^k E\left| \sum _{i=k_m}^{k_m+p-1}Z_{ni}\right| ^{2+\delta }\\&\quad \le C\sum _{m=1}^k\left\{ \sum _{i=k_m}^{k_m+p-1}E|Z_{ni}|^{2+\delta }+\left( \sum _{i=k_m}^{k_m+p-1}EZ_{ni}^2\right) ^{1+\delta /2}\right\} \\&\quad \le C\sum _{m=1}^k\left\{ \sum _{i=k_m}^{k_m+p-1}\sigma _n^{-(2+\delta )} \left| \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}w_{nj}(x)\psi _{j-i}\right| ^{2+\delta }E|e_i|^{2+\delta }\right. \\&\qquad +\,\left. \left( \sum _{i=k_m}^{k_m+p-1}\sigma _n^{-2}\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}w_{nj}(x)\psi _{j-i}\right) ^2 Ee_i^2\right) ^{1+\delta /2}\right\} \\&\quad \le C\sigma _n^{-(2+\delta )} \sum _{m=1}^k\sum _{i=k_m}^{k_m+p-1}\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}|w_{nj}(x)||\psi _{j-i}|\right) \cdot \left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}|w_{nj}(x)||\psi _{j-i}|\right) ^{1+\delta }\\&\qquad +\,C\sigma _n^{-(2+\delta )}\sum _{m=1}^k\left( \sum _{i=k_m}^{k_m+p-1}\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}w_{nj}(x)\psi _{j-i}\right) ^2\right) \\&\qquad \cdot \,\left( \sum _{i=k_m}^{k_m+p-1}\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}w_{nj}(x)\psi _{j-i}\right) ^2\right) ^{\delta /2}\\&\quad \le C\sigma _n^{-(2+\delta )}\cdot \omega _n^{1+\delta }\sum _{j=1}^n|w_{nj}(x)|\sum _{m=1}^k\sum _{i=k_m}^{k_m+p-1}|\psi _{j-i}|\\&\qquad +\,C\sigma _n^{-(2+\delta )}\cdot \omega _n^{1+\delta }\cdot p^{\delta /2}\sum _{j=1}^n|w_{nj}(x)|\sum _{m=1}^k\sum _{i=k_m}^{k_m+p-1}|\psi _{j-i}|\\&\quad \le C\left( \omega _n^{\delta /2}+(p\omega _n)^{\delta /2}\right) \le C(p\omega _n)^{\delta /2}=C\gamma _{2n}^{\delta /2}. \end{aligned}$$

Combined with (6.7) and Lemma 5.2, the proof of Lemma 5.3 is completed. \(\square \)

Proof of Lemma 5.4

Let \(\phi (t)\) and \(\psi (t)\) be the characteristic functions of \(S_{1n}^{'}\) and \(T_n\), respectively. By Esseen inequality (see Petrov 1995, Theorem 5.3), for any \(T>0\), we have

$$\begin{aligned}&\sup \limits _{u}|P(S_{1n}^{'}\le u)-P(T_n\le u)|\nonumber \\&\quad \le \int _{-T}^{T}\left| \frac{\phi (t)-\psi (t)}{t}\right| dt+T\sup \limits _{u}\int _{|t|\le C/T}|P(T_{n}\le u+t)-P(T_n\le u)|dt\nonumber \\&\quad =:L_{1n}+L_{2n}. \end{aligned}$$
(6.8)

It can be found by Lemma A.5, (\(A_1\)), (\(A_2\)) and (\(A_4\)) that

$$\begin{aligned} |\phi (t)-\psi (t)|= & {} \left| E\exp \{it S_{1n}^{'}\}-\prod _{m=1}^k E\exp \{it y_{nm}\}\right| \\\le & {} C|t|\varphi (q)\sum _{m=1}^k E|y_{nm}|\\\le & {} C|t|\varphi (q)\sum _{m=1}^k \sum _{i=k_m}^{k_m+p-1}\sigma _n^{-1}\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}|w_{nj}(x)\psi _{j-i}|\right) E|e_i|\\\le & {} Ckp\varphi (q)\omega _n^{1/2}|t|=C\gamma _{4n}|t|. \end{aligned}$$

Thus, \(L_{1n}\le C\gamma _{4n}T\). It is easily seen by Lemmas 5.3 and 5.2 that

$$\begin{aligned}&\sup \limits _{u}|P(T_{n}\le u+t)-P(T_n\le u)|\\&\quad \le \sup \limits _{u}|P(T_{n}/s_n\le (u+t)/s_n)-\Phi ((u+t)/s_n)|+\sup \limits _{u}|P(T_{n}/s_n\le u/s_n)-\Phi (u/s_n)|\\&\qquad +\,\sup \limits _{u}|\Phi ((u+t)/s_n)-\Phi (u/s_n)|\\&\quad \le C\left( \gamma _{2n}^{\delta /2}+\frac{|t|}{s_n}\right) \le C\left( \gamma _{2n}^{\delta /2}+|t|\right) . \end{aligned}$$

Hence, \(L_{2n}\le C(\gamma _{2n}^{\delta /2}+\frac{1}{T}).\) By choosing \(T=\gamma _{4n}^{-1/2}\), we can obtain that

$$\begin{aligned} \sup \limits _{u}|P(S_{1n}^{'}\le u)-P(T_n\le u)|\le C\left( \gamma _{2n}^{\delta /2}+\gamma _{4n}^{1/2}\right) . \end{aligned}$$

This completes the proof of the lemma. \(\square \)

Proof of Lemma 5.5

It follows by Lemma A.4, (\(A_1\))–(\(A_4\)) that

$$\begin{aligned} E|S_{1n}^{''}|^{2+\delta }= & {} E\left| \sum _{m=1}^k \sum _{i=l_m}^{l_m+q-1}Z_{ni}\right| ^{2+\delta }\nonumber \\\le & {} C\left[ \sum _{m=1}^k \sum _{i=l_m}^{l_m+q-1}E|Z_{ni}|^{2+\delta }+\left( \sum _{m=1}^k \sum _{i=l_m}^{l_m+q-1}E Z_{ni}^2\right) ^{1+\delta /2}\right] \nonumber \\= & {} C\left[ \sum _{m=1}^k \sum _{i=l_m}^{l_m+q-1} \sigma _n^{-(2+\delta )}\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}\omega _{nj}(x)\psi _{j-i}\right) ^{2+\delta }E|e_i|^{2+\delta }\right. \nonumber \\&\left. +\left( \sum _{m=1}^k \sum _{i=l_m}^{l_m+q-1}\sigma _n^{-2}\left( \sum _{j=\max \{1,i-n\}}^{\min \{n,i+n\}}\omega _{nj}(x)\psi _{j-i}\right) ^2 E e_i^2\right) ^{1+\delta /2}\right] \nonumber \\\le & {} C\left[ kq\omega _n^{1+\delta /2}+(k q w_n)^{1+\delta /2}\right] \nonumber \\\le & {} C(k q w_n)^{1+\delta /2}\le C(np^{-1}q w_n)^{1+\delta /2}=C\gamma _{1n}^{1+\delta /2}. \end{aligned}$$
(6.9)

Similarly, we have

$$\begin{aligned} E|S_{1n}^{'''}|^{2+\delta }\le C\gamma _{2n}^{1+\delta /2}. \end{aligned}$$
(6.10)

Thus, according to Markov’s inequality, (6.9), (6.10) and (6.3), we have

$$\begin{aligned} P(|S_{1n}^{''}|>\mu _n)\le \frac{E|S_{1n}^{''}|^{2+\delta }}{\mu _n^{2+\delta }}\le C\mu _n, \\ P(|S_{1n}^{'''}|>\nu _n)\le \frac{E|S_{1n}^{'''}|^{2+\delta }}{\nu _n^{2+\delta }}\le C\nu _n, \end{aligned}$$

and

$$\begin{aligned} P(|S_{2n}|>\lambda _n)\le \frac{ES_{2n}^{2}}{\lambda _n^2}\le C\lambda _n. \end{aligned}$$

The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., Wang, X. & Wu, Y. The Berry–Esseen type bounds of the weighted estimator in a nonparametric model with linear process errors. Stat Papers 62, 963–984 (2021). https://doi.org/10.1007/s00362-019-01120-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00362-019-01120-z

Keywords

Mathematics Subject Classification

Navigation