Skip to main content
Log in

Numerical study and error estimation in power-law nanofluid flow over vertical frustum of a cone

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The aim of this article is to analyze the mixed convective Ostwald–de Waele power-law nanofluid flow over vertical frustum of a cone in a non-Darcy porous medium using an efficient numerical technique. The involved power-law nanofluid model utilizes water as the base fluid, and Ti-alloy (Ti6Al4V) and multi-wall carbon nanotubes (MWCNTs) as the nanoparticles. The solution of resultant non-similarity equations subjected to boundary conditions is described using the local non-similarity technique along with an efficient spectral local linearization method. The error estimation is provided to show the efficiency of above-mentioned solution procedure. A detailed explanation about the impact of nanoparticle volume fraction on the dimensionless velocity and temperature profiles along with heat transfer rate and skin friction coefficient is also provided for both the opposing and aiding flow cases. On comparison of the present results in particular cases with the relevant published data, it is assured that this method gives highly accurate outcomes for this kind of very complex fluid flow problems. The domination of dilatant nanofluid over pseudo-plastic nanofluid in both the aiding and opposing flow cases is noticed for velocity profiles, and the velocity is decreased with an increment in the nanoparticle volume fraction. Also, the variation in profiles with a streamwise coordinate \(\xi\) shows non-similar nature of the problem. The use of Ti-alloy and MWCNTs in this work makes it very profitable in various important sectors like aerospace and medical sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D A Nield and A Bejan Convection in Porous Media (Springer International Publishing, Berlin) (2017)

    Book  Google Scholar 

  2. C Y Cheng Int. Commun. Heat Mass Transf. 39 1348 (2012)

    Article  Google Scholar 

  3. F M Hady, M R Eid, M R Abd-Elsalam and M A Ahmed IOSR J. Math. 8 51 (2013)

    Article  Google Scholar 

  4. P V S N Murthy, Ch Ram Reddy, A J Chamkha and A M Rashad Int. Commun. Heat Mass Transf. 47 41 (2013)

    Article  Google Scholar 

  5. R Nandkeolyar, P K Kameswaran, S Shaw and P Sibanda J. Heat Transf. 136 122001-1 (2014)

    Article  Google Scholar 

  6. M Khan and W A Khan AIP Adv. 6 025211 (2016)

    Article  ADS  Google Scholar 

  7. Y Zhang, M Zhang and Y Bai J. Taiwan Inst. Chem. Eng. 70 104 (2017)

    Article  Google Scholar 

  8. P Barnoon and D Toghraie Powder Tech. 325 78 (2018)

    Article  Google Scholar 

  9. M K Nayak, S Shaw, V S Pandey and A J Chamkha Indian J. Phys. 92 1017 (2018)

    Article  ADS  Google Scholar 

  10. A S Dogonchi and D D Ganji Indian J. Phys. 92 757 (2018)

    Article  ADS  Google Scholar 

  11. B Vasu, R S R Gorla, O A Beg, P V S N Murthy, V R Prasad and A Kadir J. Thermophy. Heat Transf. 33 343 (2019)

    Article  Google Scholar 

  12. H Goodarzi, A A Omid, M M Sarafraz, M M Karcheghani, M R Safaei and G A S Shabani J. Thermal Sci. Eng. Appl. 11 061020-1 (2019)

    Article  Google Scholar 

  13. M Dhlamini, P K Kameswaran, P Sibanda, S Motsa and H Mondal J. Comp. Des. Eng. 6 149 (2019)

    Google Scholar 

  14. A Hiremath, G J Reddy and O A Beg Arab. J. Sci. Eng. 44 7875 (2019)

    Article  Google Scholar 

  15. M Kumar, G J Reddy, N N Kumar and O A Beg Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 233 49 (2019)

    Google Scholar 

  16. S K Das, S U S Choi, W Yu and T Pradeep Nanofluids: Science and Technology (Wiley-Interscience, New Jersey) (2007)

    Book  Google Scholar 

  17. W J Minkowycz, E M Sparrow and J P Abraham Nanoparticle Heat Transfer and Fluid Flow (Taylor and Fracis Group, New York) (2013)

    Google Scholar 

  18. S Kakac and A Pramuanjaroenkij Int. J. Heat Mass Transf. 52 3187 (2009)

    Article  Google Scholar 

  19. J Fan and L Wang J. Heat Transf. 133 040801 (2011)

    Article  Google Scholar 

  20. C M Hogan Phys. Rev. 188 870 (1969)

    Article  ADS  Google Scholar 

  21. P Parayanthal and F Pollak Phys. Rev. Lett. 52 1822 (1984)

    Article  ADS  Google Scholar 

  22. M Peters, J Kumpfert, C H Ward and C Leyens Adv. Eng. Mater. 5 419 (2003)

    Article  Google Scholar 

  23. P Singh, H Pungotra and N S Kalsi Mater. Today Proc. 4 8971 (2017)

    Article  Google Scholar 

  24. U Khan, A Zaib, I Khan and K S Nisar J. Mater. Res. Tech. 9 188 (2020)

    Article  Google Scholar 

  25. S S Chougule and S K Sahu J. Thermal Sci. Eng. Appl. 6 041009-1 (2014)

    Article  Google Scholar 

  26. X Liu, H I Mohammed, A Z Ashkezari, A Shahsavar, A K Hussein and S Rostami J. Mol. Liq. 300 112269 (2020)

    Article  Google Scholar 

  27. P Singh, V Radhakrishnan and K A Narayan Ingenieur Archiv. 59 382 (1989)

    Article  Google Scholar 

  28. R H Christopher and S Middleman Ind. Eng. Chem. Fund. 4 422 (1965)

    Article  Google Scholar 

  29. R V Dharmadhikari and D D Kale Chem. Eng. Sci. 40 527 (1985)

    Article  Google Scholar 

  30. C S K Raju, N Sandeep and V Sugunamma J. Mol. Liq. 222 1183 (2016)

    Article  Google Scholar 

  31. S O Giwa, M Sharifur and J P Meyer Int. J. Heat Mass Transf. 148 119072 (2020)

    Article  Google Scholar 

  32. E M Sparrow and H S Yu Trans. ASME J. Heat Trans. 93 328 (1971)

    Article  Google Scholar 

  33. S S Motsa J. Appl. Math. 2013 1 (2013)

    Google Scholar 

  34. S S Motsa and P Sibanda Comp. Math. Appl. 63 1197 (2012)

    Article  Google Scholar 

  35. P Cheng Int. J. Heat Mass Trans. 20 807 (1977)

    Article  Google Scholar 

  36. W Chaoyang, T Chuanjing and Z Xiaofen Acta Mechanica Sinica 6 214 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to RamReddy Chetteti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetteti, R., Srivastav, A. Numerical study and error estimation in power-law nanofluid flow over vertical frustum of a cone. Indian J Phys 96, 1167–1179 (2022). https://doi.org/10.1007/s12648-021-02055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02055-8

Keywords

Navigation