Skip to main content
Log in

Fractional exponents of electrical and thermal conductivity of vanadium intercalated layered 2H-NbS2 bulk crystal

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Intercalation of transition metal dichalcogenides (TMDs) by 3d or 4d transition metal elements are of considerable interest as the intercalated atoms can finely tune the physical and chemical properties of host TMDs. On addition, these intercalation complexes show interesting magnetic property and displays anomalous transport behavior at the magnetic ordering temperature. Here, we have synthesized and measured transport properties of single crystal vanadium intercalated Niobium Di-sulphide. At 300 K, electrical resistivity and thermal conductivity of V\(_{0.3}\)NbS\(_{2}\) is found to be \(\sim \) 10\(^{-6}\) \(\Omega \) m and 36 W m\(^{-1}\) K\(^{-1}\) respectively. Unlike phonon scattering, the spin scattering is found to affect both electrical and phonon conduction at low temperature. The electrical resistivity at temperature \({T} < 45\,\hbox {K}\) follows \(T^{3/2}\) behavior, whereas the electronic part of thermal conductivity shows exponent of 0.8. Using steady-state method, the temperature dependent lattice part of thermal conductivity shows exponents of 0.5 and − 0.5 at \({T} < 45\,\hbox {K}\) and \({T} > 45\,\hbox {K}\) respectively. Moreover, the peak of the total thermal conductivity also overlaps with the magnetic transition temperature, indicating the participation of spin dependent phonon dynamics below 45 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Q H Wang, K K Zadeh, A Kis, J N Coleman and M S Strano Nat. Nanotechnol. 7 699 (2012)

    Article  ADS  Google Scholar 

  2. A Kumar and P K Ahluwalia Eur. Phys. J. B 85 186 (2012)

    Article  ADS  Google Scholar 

  3. R Mukherjee et al. Phys. Rev. Appl. 7, 034011 (2017)

    Article  ADS  Google Scholar 

  4. D Sarkar et al. Nature 526, 91 (2015)

    Article  ADS  Google Scholar 

  5. F Yin et al. Coord. Chem. Rev. 347 77 (2017)

    Article  Google Scholar 

  6. S Polesya, S Mankovsky, D Ködderitzsch, W Bensch and H Ebert Phys. Status Solidi (RRL)-Rapid Res. Lett. 10 174423 (2016)

    Google Scholar 

  7. F Wu, T Lovorn, E Tutuc, I Martin and A H MacDonald Phys. Rev. Lett. 122 086402 (2019)

    Article  ADS  Google Scholar 

  8. S F Ebadzadeh, H Goudarzi and M Khezerlou Phys. B Condens. Matter 559 32 (2019)

    Article  ADS  Google Scholar 

  9. A A Tedstone, D J Lewis and P T O’Brien Chem. Mater. 28 1965 (2016)

    Article  Google Scholar 

  10. H Fang et al. Proc. Natl. Acad. Sci. 111 6198 (2014)

    Article  ADS  Google Scholar 

  11. S Fan, S Yun, Y Joon, W Jong and Y H Lee Adv. Sci. 7 1902751 (2020)

  12. R Mukherjee Bull. Mater. Sci. 43 1–5 (2020)

    Article  Google Scholar 

  13. Y Yu et al. ACS Nano 11 9390 (2017)

    Article  Google Scholar 

  14. L Henan, S Yumeng, H C Ming and J L Lain Nano Energy 18 293 (2015)

    Article  Google Scholar 

  15. J Lee, J H Shin, G H Lee and C H Lee Nanomaterials 6 193 (2016)

    Article  Google Scholar 

  16. D Wickramaratne, F Zahid and R K Lake J. Chem. Phys. 140 124710 (2014)

    Article  ADS  Google Scholar 

  17. M Zulfiqar, Y Zhao, G Li, Z C Li and J Ni Sci. Rep. 9 4571 (2019)

    Article  ADS  Google Scholar 

  18. Q Cai et al. Sci. Adv. 5 eaav0129 (2019)

    Article  ADS  Google Scholar 

  19. S G Jeon et al. Nanoscale 10 5985 (2018)

    Article  Google Scholar 

  20. P G Arkadiusz et al. Sci. Rep. 9 13338 (2019)

    Article  Google Scholar 

  21. H Li et al. Adv. Funct. Mater. 22 1385 (2012)

    Article  ADS  Google Scholar 

  22. M T Pettes, J Insun, Y Zhen and S Li Nano Lett. 11 1195 (2011)

    Article  Google Scholar 

  23. P Jiang, X Qian, X Gu and R Yang Adv. Mater. 29 1701068 (2017)

    Article  Google Scholar 

  24. K Lu et al. Phys. Rev. Mater. 4 054416 (2020)

    Article  ADS  Google Scholar 

  25. Z T Diao, S Tsunashima and M Jimbo J. Phys. Condens. Matter 10 6659 (1998)

    Article  ADS  Google Scholar 

  26. J L Duvail, A Fert, L G Pereira and D K Lottis J. Appl. Phys. 75 7070 (1994)

    Article  ADS  Google Scholar 

  27. P G Klemens, Thermal Conductivity, vol. 20. (Boston: Springer) p. 261 (1989)

  28. I Pettes, M T Ou, E Wu, W Shi and L Jo Appl. Phys. Lett. 104 201902 (2014)

    Article  ADS  Google Scholar 

  29. N Peimyoo, S Jingzhi, Y Weihuang, W Yanlong, C Chunxiao and Y Ting Nano Res. 8 1210 (2014)

Download references

Acknowledgements

I acknowledge Suryakanta Ghosh from NIT Warangal for useful discussions. Further, I admire the support from Lovely Professional University for providing the fund and other opportunities during the process of research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Mukherjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, B., Sharma, R., Kour, S. et al. Fractional exponents of electrical and thermal conductivity of vanadium intercalated layered 2H-NbS2 bulk crystal. Indian J Phys 96, 1335–1339 (2022). https://doi.org/10.1007/s12648-021-02045-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02045-w

Keywords

Navigation