Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) February 1, 2021

Development of a fast characterization setup for radionuclide generators demonstrated by a 227Ac-based generator

  • Dominik Krupp , Christoph E. Düllmann , Lotte Lens and Ulrich W. Scherer
From the journal Radiochimica Acta

Abstract

The development of a setup for a fast online characterization of radionuclide generators is reported. A generator utilizing the mother nuclide 227Ac sorbed on a cation exchange resin is continuously eluted by using a peristaltic pump. To allow continuous and pulse-free elution of a large volume over extended time periods a 3D-printed interface designed to remove pressure-oscillations induced by the pump was placed between pump and generator column to ensure undisturbed generator elution. The eluate of the generator is passed through a 3D printed flow cell placed inside a borehole Na(Tl)-scintillation detector for high counting efficiency. Alternatively, a HPGe detector suitable for nuclide identification was used to demonstrate the validity of the online method. The detection system combines conventional gamma-ray spectrometry with fast list mode data acquisition in the Matlab software package. Elution experiments were performed at different flow rates of hydrochloric acid, separating 211Bi (t1/2 = 2.14 min) free from its parent nuclides. In addition, to prove the versatility of the setup, experiments at different hydrochloric acid concentrations were performed resulting in the elution of pure 211Pb (t1/2 = 36.1 min) and 223Ra (t1/2 = 11.43 d), respectively.


Corresponding authors: Dominik KruppandUlrich W. Scherer, Institut für Physikalische Chemie und Radiochemie, Hochschule Mannheim – University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany, E-mail: (D. Krupp), (U. W. Scherer)

Acknowledgments

The authors acknowledge the institute of nuclear chemistry, Johannes Gutenberg University Mainz, for making 227Ac available for this research. We thank J. Runke and P. Thörle-Pospiech for the preparation of the 227Ac sample.

  1. Author contributions: The experimental setup and the DAQ software was developed by D.K. Actinium was provided by Ch. E. D. Experiments were done by D.K. and L.L. Data analysis was performed by D.K. and U.W.S. D.K. wrote the manuscript with input from U.W.S., Ch. E. D. and L.L. The project was supervised by U.W.S.

  2. Research funding: This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Banerjee, S., Pillai, M. R., Ramamoorthy, N. Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin. Nucl. Med. 2001, 31, 260–277.10.1053/snuc.2001.26205Search in Google Scholar

2. Rösch, F., Knapp, F. F. Radionuclide generators. In Handbook of nuclear chemistry, 2nd ed.; Vértes, A., Ed. Springer: Dordrecht, 2011; pp. 1935–1976.10.1007/978-1-4419-0720-2_40Search in Google Scholar

3. Filosofov, D. V., Loktionova, N. S., Rösch, F. A 44Ti/44Sc radionuclide generator for potential application of 44Sc-based PET-radiopharmaceuticals. Radiochim. Acta 2010, 98, 149–156.10.1524/ract.2010.1701Search in Google Scholar

4. Kensett, M. J., Horlock, P. L., Waters, S. L., Bateman, D. M. Experience with a 82Sr/82Rb generator for clinical use. Int. J. Radiat. Appl. Instrum. Appl. Radiat. Isot. 1987, 38, 227–231.10.1016/0883-2889(87)90092-XSearch in Google Scholar

5. Dhawan, V. Model for 82Sr/82Rb generator elution profiles: a secondary approach to radioassay/dosimetry. Int. J. Radiat. Appl. Instrum. Appl. Radiat. Isot. 1987, 38, 233–239.10.1016/0883-2889(87)90093-1Search in Google Scholar

6. Zhernosekov, K. P., Filosofov, D. V., Qaim, S. M., Rösch, F. A 140Nd/140Pr radionuclide generator based on physico-chemical transitions in 140Pr complexes after electron capture decay of 140Nd-DOTA. Radiochim. Acta 2007, 95, 319–327.10.1524/ract.2007.95.6.319Search in Google Scholar

7. Mirzadeh, S. Generator-produced alpha-emitters. Appl. Radiat. Isot. 1998, 49, 345–349.10.1016/S0969-8043(97)00175-9Search in Google Scholar

8. Müller, C., van der Meulen, N. P., Benešová, M., Schibli, R. Therapeutic radiometals beyond 177Lu and 90Y: production and application of promising α-particle, β--particle, and auger electron emitters. J. Nucl. Med. 2017, 58, 91S–96S.10.2967/jnumed.116.186825Search in Google Scholar

9. Aldrich, K. E., Lam, M. N., Eiroa-Lledo, C., Kozimor, S. A., Lilley, L. M., Mocko, V., Stein, B. W. Preparation of an actinium-228 generator. Inorg. Chem. 2020, 59, 3200–3206.10.1021/acs.inorgchem.9b03563Search in Google Scholar

10. McDevitt, M. R., Finn, R. D., Sgouros, G., Ma, D., Scheinberg, D. A. An 225Ac/213Bi generator system for therapeutic clinical applications: construction and operation. Appl. Radiat. Isot. 1999, 50, 895–904.10.1016/S0969-8043(98)00151-1Search in Google Scholar

11. Hassfjell, S. P., Hoff, P. A generator for production of 212Pb and 212Bi. Appl. Radiat. Isot. 1994, 45, 1021–1025.10.1016/0969-8043(94)90170-8Search in Google Scholar

12. Guseva, L. I., Tikhomirova, G. S., Dogadkin, N. N. An 227Ac- 211Pb generator for test experiments of solution chemistry of element 114. J. Radioanal. Nucl. Chem. 2004, 260, 167–172.10.1023/B:JRNC.0000027076.41699.21Search in Google Scholar

13. Kmak, K. N., Despotopulos, J. D., Shaughnessy, D. A. Separation of Pb, Bi and Po by cation exchange resin. J. Radioanal. Nucl. Chem. 2017, 314, 985–989.10.1007/s10967-017-5487-4Search in Google Scholar

14. Despotopulos, J. D., Kmak, K. N., Moody, K. J., Shaughnessy, D. A. Development of a 212Pb and 212Bi generator for homolog studies of flerovium and moscovium. J. Radioanal. Nucl. Chem. 2018, 317, 473–477.10.1007/s10967-018-5848-7Search in Google Scholar

15. Omtvedt, J. P., Alstad, J., Bjørnstad, T., Düllmann, Ch. E., Gregorich, K. E., Hoffman, D. C., Nitsche, H., Opel, K., Polakova, D., Samadani, F., Schulz, F., Skarnemark, G., Stavsetra, L., Sudowe, R., Zheng, L. Chemical properties of the transactinide elements studied in liquid phase with SISAK. Eur. Phys. J. D. 2007, 45, 91–97.10.1140/epjd/e2007-00214-6Search in Google Scholar

16. Krupp, D., Scherer, U. W. Prototype development of ion exchanging alpha detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2018, 897, 120–128.10.1016/j.nima.2018.04.038Search in Google Scholar

17. Marouli, M., Lutter, G., Pommé, S., van Ammel, R., Hult, M., Pierre, S., Dryák, P., Carconi, P., Fazio, A., Bruchertseifer, F., Morgenstern, A. Measurement of absolute γ-ray emission probabilities in the decay of 227Ac in equilibrium with its progeny. Appl. Radiat. Isot. Includ. Data Instrument. Methods Use Agric. Ind. Med. 2019, 144, 34–46.10.1016/j.apradiso.2018.08.023Search in Google Scholar

18. International Nuclear Structure and Decay Data Network. Nuclear data services: evaluated nuclear structure and decay data 2020. https://www.nndc.bnl.gov/ensdf/ (accessed Jun 4, 2020).Search in Google Scholar

19. Done, L., Ioan, M.-R. Minimum detectable activity in gamma spectrometry and its use in low level activity measurements. Appl. Radiat. Isot. Includ. Data Instrument. Methods Use Agric. Ind. Med. 2019, 114, 28–32.10.1016/j.apradiso.2016.05.004Search in Google Scholar

20. International Organization for Standardization (ISO). ISO 11929: Determination of Characteristic Limits (Decision Threshold, Detection Limit, and Limits of the Confidence Interval) for Measurements of Ionizing Radiation— Fundamentals and Applications. Geneva, 2019.Search in Google Scholar

21. Strelow, F. W. E. An ion exchange selectivity scale of cations based on equilibrium distribution coefficients. Anal. Chem. 1960, 32, 1185–1188.10.1021/ac60165a042Search in Google Scholar

22. Alhassanieh, O., Abdul-Hadi, A., Ghafar, M., Aba, A. Separation of Th, U, Pa, Ra and Ac from natural uranium and thorium series. Appl. Radiat. Isot. 1999, 51, 493–498.10.1016/S0969-8043(99)00068-8Search in Google Scholar

Received: 2020-07-21
Accepted: 2020-12-09
Published Online: 2021-02-01
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0077/html
Scroll to top button