Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 15, 2021

Morphology optimization of poly(ethylene terephthalate)/polyamide blends compatibilized via extension-dominated twin-screw extrusion

  • Hao Chen , Molin Guo , David Schiraldi and João M. Maia ORCID logo EMAIL logo

Abstract

Poly(ethylene terephthalate) (PET) and polyamide (PA) are immiscible polymers, which requires the use of compatibilizers to stabilize the morphology and achieve acceptable property levels. Therefore, controlling the degree of dispersion, especially the size of the disperse PA droplets in the PET matrix is of paramount importance. This study aims to improve the mixing, i.e., minimize PA droplet size, in immiscible and compatibilized PET/PA and PET/Nylon-MXD6 (MXD6) blends by resorting to extension-dominated mixing in twin-screw extrusion (TSE). MXD6 is an aromatic polyamide similar in polarity to PET, so it is expected that it will blend more effectively than is the case with aliphatic nylon-6 and PET. Two screw configurations are used, a benchmark shear-dominated screw with kneading blocks (KBs) in an aggressive configuration, and an extension-dominated screw configuration with static mixers with hyperbolic C–D channels, recently developed by our group, in place of the KBs. The results show that the use of extensional mixing elements (EMEs) in place of KBs results in a significant decrease of both average and maximum droplet size for all blends, and up to more than one order of magnitude between the most extreme cases of the KB-processed immiscible blend and EME-processed compatibilized blends.


Corresponding author: João M. Maia, Department of Macromolecular Science and Engineering, Case Western Reserve University, ClevelandOH44106-7202, USA, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Carson, S. O., Maia, J. M., Covas, J. A. Adv. Polym. Technol. 2018, 37, 167–175; https://doi.org/10.1002/adv.21653.Search in Google Scholar

2. Cogswell, F. N. Polym. Eng. Sci. 1972, 12, 64–73; https://doi.org/10.1002/pen.760120111.Search in Google Scholar

3. Chen, H., Pandey, V., Carson, S., Maia, J. M. Int. Polym. Proc. 2020, 35, 37–49; https://doi.org/10.3139/217.3857.Search in Google Scholar

4. Carson, S. O., Covas, J. A., Maia, J. M. Adv. Polym. Technol. 2017, 36, 455–465; https://doi.org/10.1002/adv.21627.Search in Google Scholar

5. Chen, H., Zhu, S., Maia, J. M., Polym. Eng. Sci.https://doi.org/10.1002/pen.25357.Search in Google Scholar

6. Cho, S., Hong, J. S., Lee, S. J., Ahn, K. H., Covas, J. A., Maia, J. M. Macromol. Mater. Eng. 2011, 296, 341–348; https://doi.org/10.1002/mame.201000194.Search in Google Scholar

7. Covas, J. A., Carneiro, O. S., Costa, P., Machado, A. V., Maia, J. M. Plast. Rubber Compos. 2004, 33, 55–61; https://doi.org/10.1179/146580104225018300.Search in Google Scholar

8. Covas, J. A., Carneiro, O. S., Maia, J. M., Filipe, S. A., Machado, A. V. Can. J. Chem. Eng. 2002, 80, 1065–1074; https://doi.org/10.1002/cjce.5450800608.Search in Google Scholar

9. Covas, J. A., Maia, J. M., Machado, A. V., Costa, P. J. Non-Newtonian Fluid Mech. 2008, 148, 88–96; https://doi.org/10.1016/j.jnnfm.2007.04.009.Search in Google Scholar

10. Covas, J. A., Nobrega, J. M., Maia, J. M. Polym. Test. 2000, 19, 165–176; https://doi.org/10.1016/S0142-9418(98)00086-5.Search in Google Scholar

11. Cox, W., Merz, E. J. Polym. Sci. 1958, 28, 619–622; https://doi.org/10.1002/pol.1958.1202811812.Search in Google Scholar

12. Filipe, S., Cidade, M. T., Wilhelm, M., Maia, J. M. J. Appl. Polymer Sci. 2006, 99, 347–359; https://doi.org/10.1002/app.22393.Search in Google Scholar

13. Grace, H. P. Chem. Eng. Commun. 1982, 14, 225–277; https://doi.org/10.1080/00986448208911047.Search in Google Scholar

14. Hyun, G. O., Doo, H. K., Kyung, H. A., Seung, J. L., Maia, J. M. Eur. Polym. J. 2016, 76, 216–227; https://doi.org/10.1016/j.eurpolymj.2016.01.042.Search in Google Scholar

15. Rauwendaal, C. Plastics, Addit. Compd. 2008, 10, 32–36; https://doi.org/10.1016/S1464-391X(08)70227-7.Search in Google Scholar

16. Rauwendaal, C., Osswald, T. A., Gramann, P., Davis, B. Int. Polym. Proc. 1999, 14, 28–34; https://doi.org/10.3139/217.1524.Search in Google Scholar

17. Rauwendaal, C., Osswald, T. A., Tellez, G., Gramann, P. J. Int. Polym. Proc. 1998, 13, 327–333; https://doi.org/10.3139/217.980327.Search in Google Scholar

18. Manas, Z. I. Mixing and Compounding of Polymers: Theory and Practice; Hanser: Cincinnati, OH, 2009.10.3139/9783446433717Search in Google Scholar

19. Kashfipour, M. A., Guo, M., Mu, L., Mehra, N., Cheng, Z., Olivio, J., Zhu, S., Maia, J. M., Zhu, J. Compos. Sci. Technol. 2019, 184, 107859; https://doi.org/10.1016/j.compscitech.2019.107859.Search in Google Scholar

20. Guo, M., Chen, H., Maia, J. M. J. Polym. Eng.https://doi.org/10.1515/polyeng-2019-0238.Search in Google Scholar

21. Fakirov, S., Evstatiev, M. Polymer, 1993, 34, 4669–4679; https://doi.org/10.1016/0032-3861(93)90700-K.Search in Google Scholar

22. Hu, Y. S., Prattipati, V., Mehta, S., Schiraldi, D. A., Hiltner, A., Baer, E. Polymer, 2005, 46, 2685–2698; https://doi.org/10.1016/j.polymer.2005.01.056.Search in Google Scholar

23. Prattipati, V., Hu, Y. S., Bandi, S., Schiraldi, D. A., Hiltner, A., Baer, E., Mehta, S. J. Appl. Polym. Sci. 2005, 97, 1361–1370; https://doi.org/10.1002/app.21843.Search in Google Scholar

24. Prattipati, V., Hu, Y. S., Bandi, S., Mehta, S., Schiraldi, D. A., Hiltner, A., Baer, E. J. Appl. Polym. Sci. 2006, 99, 225–235; https://doi.org/10.1002/app.22463.Search in Google Scholar

25. Gaymans, R. J., deHaan, J. L., Polymer, 1993, 34, 4360–4364; https://doi.org/10.1016/0032-3861(93)90202-L.Search in Google Scholar

26. Bouma, K., Wit, G. D., Lohmeijer, J., Gaymans, R. J. Polymer, 2000, 41, 3965–3974; https://doi.org/10.1016/S0032-3861(99)00527-3.Search in Google Scholar

27. Samperi, F., Montando, M. S., Battiato, S., Carbone, D., Puglisi, C. J. Polym. Sci. Part A Polym. Chem.48, 5135–5155; https://doi.org/10.1002/pola.24312.Search in Google Scholar

28. Bandi, S. A., Mehta, S., Schiraldi, D. A. Polym. Degrad. Stabil. 2005, 88, 341–348; https://doi.org/10.1016/j.polymdegradstab.2004.11.009.Search in Google Scholar

29. Winnacker, M., Rieger, B. Polym. Chem. 2016, 7, 7036–7046; https://doi.org/10.1039/C6PY01783E.Search in Google Scholar

30. Pietrasanta, Y., Robin, J., Torres, N. Macromol. Chem. Phys. 1999, 200, 142–149; https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1<142::AID-MACP142>3.0.CO;2-W.10.1002/(SICI)1521-3935(19990101)200:1<142::AID-MACP142>3.0.CO;2-WSearch in Google Scholar

31. Zhang, Z., Wang, C., Mai, K. Adv. Indust. Eng. Polymer Res. 2019, 2, 69–76; https://doi.org/10.1016/j.aiepr.2019.02.001.Search in Google Scholar

32. Albaniza, A., Diego, T., Silva, F. A., Poliana, S., Suedina, M. L., Eduardo, S., Canedo, L. Polym. Test. 2016, 50, 26–32; https://doi.org/10.1016/j.polymertesting.2015.11.020.Search in Google Scholar

33. Maa, C., Chang, F. J. Appl. Polymer Sci. 1993, 49, 913–924; https://doi.org/10.1002/app.1993.070490517.Search in Google Scholar

34. Jamali, S., Paiva, M. C., Covas, J. A. Polym. Test. 2013, 32, 701–707; https://doi.org/10.1016/j.polymertesting.2013.03.005.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/polyeng-2020-0229).


Received: 2020-08-21
Accepted: 2020-12-12
Published Online: 2021-02-15
Published in Print: 2021-03-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/polyeng-2020-0229/html
Scroll to top button