Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access February 25, 2021

New quantum integral inequalities for some new classes of generalized ψ-convex functions and their scope in physical systems

  • Saima Rashid , Saima Parveen , Hijaz Ahmad and Yu-Ming Chu EMAIL logo
From the journal Open Physics

Abstract

In the present study, two new classes of convex functions are established with the aid of Raina’s function, which is known as the ψ-s-convex and ψ-quasi-convex functions. As a result, some refinements of the Hermite–Hadamard ( ℋℋ )-type inequalities regarding our proposed technique are derived via generalized ψ-quasi-convex and generalized ψ-s-convex functions. Considering an identity, several new inequalities connected to the ℋℋ type for twice differentiable functions for the aforesaid classes are derived. The consequences elaborated here, being very broad, are figured out to be dedicated to recapturing some known results. Appropriate links of the numerous outcomes apprehended here with those connecting comparatively with classical quasi-convex functions are also specified. Finally, the proposed study also allows the description of a process analogous to the initial and final condition description used by quantum mechanics and special relativity theory.

1 Introduction

Let be an interval in R . Then G : R is said to be convex if

G ( ξ x + ( 1 ξ ) y ) ξ G ( x ) + ( 1 ξ ) G ( y )

holds for all x , y and ξ ∈ [0, 1]. 

Convex functions have potential applications in many intriguing and captivating fields of research and furthermore played a remarkable role in numerous areas, such as coding theory, optimization, physics, information theory, engineering and inequality theory. Several new classes of classical convexity have been proposed in the literature, see refs [1,2]. Many researchers endeavored, attempted and maintained their work on the concept of convex functions and generalized its variant forms in different ways using innovative ideas and fruitful techniques [3,4]. Many mathematicians always kept continually hardworkingin the field of inequalities and have collaborated with different ideas and concepts in the theory of inequalities and its applications, see refs [5,6, 7,8,9, 10,11,12, 13,14]. Many inequalities are proved for convex functions, but the most known from the related literature is the Hermite–Hadamard inequality.

Let G : R R be a convex function such that η 1 < η 2.  Then

(1.1) G η 1 + η 2 2 1 η 2 η 1 η 1 η 2 G ( z ) d z G ( η 1 ) + G ( η 2 ) 2 .

The inequality (1.1) is a well-known paramount in the related literature and plays its pivotal role in optimization, coding and fractional calculus theory [15,16,17, 18,19,20, 21,22,23, 24,25].

Many studies have recently been carried out in the field of q-analysis [26,27,28, 29,30,31, 32,33,34,39], starting with Euler owing to an extraordinary demand for mathematics that models quantum figuring q-calculus performed as an association between mathematics and physics. Several mathematical areas have been correlated with quantum calculus such as fractional diffusion equations, special theory of relativity, quantum mechanics, orthogonal polynomials and henceforth. The mathematical description of a quantum system typically takes the form of a “wavefunction,” generally represented in equations by the Greek letter psi: ψ. Apparently, Euler was the founder of this branch of mathematics, by using the parameter q in Newton’s work of infinite series. Later, Jackson was the first to develop q-calculus that is known without limits calculus in a systematic way [36]. In 1908–1909, Jackson defined the general q-integral and q-difference operator [35]. In 1969, Agarwal described the q-fractional derivative for the first time [37]. In 1966–1967, Al-Salam introduced q-analogs of the Riemann–Liouville fractional integral operator and q-fractional integral operator [38]. In 2004, Rajkovic gave a definition of the Riemann-type q-integral which was the generalization of Jackson q-integral. In 2013, Tariboon introduced D q η 1 -difference operator [42].

Inspired by the aforementioned literature on the improvement of the correlation of quantum calculus and convexity theory, we addressed the notion of generalized ψ-s-convex functions and generalized ψ-quasi-convex functions. Taking into consideration, a q-integral identity, we derived some new estimates of Hermite–Hadamard inequalities for twice differentiable functions via the aforesaid classes of generalized ψ-convex functions. Relevant connections of the several consequences demonstrated here with those associating relatively some well-known classical convex functions are also apprehended.

2 Preliminaries

First, suppose there is an arbitrary non-negative function : ( 0 , 1 ) R , ϑ = { ϑ ( m ) } m = 0 be a bounded sequence of real numbers and υ 1 , υ 2 ϑ ( . ) υ 1 , υ 2 > 0 denotes Raina’s function.

In ref. [40], R. K. Raina explored a new class of functions stated as:

(2.1) υ 1 , υ 2 ϑ ( z ) = υ 1 , υ 2 ϑ ( 0 ) , ϑ ( 1 ) , ( z ) = m = 0 ϑ ( m ) Γ ( υ 1 m + ϑ ) z m ,

where υ 1 , υ 2 > 0 , z < R and

ϑ = ( ϑ ( 0 ) , , ϑ ( m ) , )

is a bounded sequence of positive real numbers. Note that if we choose υ 1 = 1, υ 2 = 0 in (2.1), then

ϑ ( m ) = ( δ 1 ) m ( δ 2 ) m ( δ 3 ) m f o r m = 0 , 1 , 2 , ,

where δ 1δ 2 and δ 3 are parameters which can choose arbitrary real and complex values (provided that δ 3 ≠ 0, −1, −2, …,) and we have the notion (b) m by

( b ) m = Γ ( b + m ) Γ ( b ) = b ( b + 1 ) ( b + m 1 ) , m = 0 , 1 , 2 , ,

then the classical hypergeometric function is stated as follows:

υ 1 , υ 2 ϑ ( z ) = F ( δ 1 , δ 2 ; δ 3 ; z ) = m = 0 ( δ 1 ) m ( δ 2 ) m m ! ( δ 3 ) m z m , z 1 , z C .

Also, if ϑ = (1, 1,…) with ς = δ, ((δ) > 0), ϑ = 1 and restricting its domain to z C in (2.1), then we have the classical Mittag-Leffler function:

E δ 1 ( z ) = m = 0 1 Γ ( 1 + δ 1 m ) z κ .

Next, we evoke a novel concept of set and mappings including Raina’s functions.

Definition 2.1

[41] A non-empty set K is said to be a generalized ψ-convex set, if

(2.2) η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) K

for all η 1 , η 2 K , ξ [ 0 , 1 ] .

We now define the generalized ψ-convex function presented by Vivas-Cortez et al. [41].

Definition 2.2

[41] Let a set K R and a mapping G : K R is said to be generalized ψ-convex, if

(2.3) G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) ( 1 ξ ) G ( η 1 ) + ξ G ( η 2 ) for all η 1 , η 2 K , ξ [ 0 , 1 ] .

Next, we present another idea of generalized ψ-convex functions for an arbitrary nonnegative function .

Definition 2.3

Let : ( 0 , 1 ) R be a real mapping and G : K R is said to be a generalized (ψ)-convex function, if

(2.4) G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) ( 1 ξ ) G ( η 1 ) + ( ξ ) G ( η 2 ) for all η 1 , η 2 K , ξ [ 0 , 1 ] .

Furthermore, we demonstrate a new class of generalized ψ-convex functions with respect to an arbitrary non-negative function is known as the generalized ψ-s-convex function.

Definition 2.4

Let s ∈ (0, 1] and a mapping G : K R is said to be generalized ψ-s-convex, if

(2.5) G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) ( 1 ξ ) s G ( η 1 ) + ξ s G ( η 2 ) for all η 1 , η 2 K , ξ [ 0 , 1 ] .

Definition 2.5

Let a function G : K R is said to be generalized ψ-quasi-convex, if

(2.6) G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) sup G ( η 1 ) , G ( η 2 ) for all η 1 , η 2 K , ξ [ 0 , 1 ] .

It is obvious that any generalized ψ-convex function is a generalized ψ-quasi-convex function but converse may not be true.

In this section, we first evoke certain earlier famous notions on q-calculus that will be helpful throughout the investigation.

Consider an interval J = [ η 1 , η 2 ] R and 0 < q < 1 and be a constant.

Definition 2.6

[42] Let a continuous mapping G : J R and suppose z J . Then q-derivative on J of function G at z is stated as

(2.7) D q η 1 G ( z ) = G ( z ) G ( q z + ( 1 q ) η 1 ) ( 1 q ) ( z η 1 ) , z η 1 , D q η 1 G ( η 1 ) = lim z η 1 D q η 1 G ( z ) .

We say that G is q-differentiable on J provided D q η 1 G ( z ) exists for all z J . Note that if η 1 = 0 in (2.7), then D q 0 G ( z ) = D q G , where D q is the worthmentioning q-derivative of the mapping G ( z ) stated by

(2.8) D q G ( z ) = G ( z ) G ( q z ) ( 1 q ) z .

Definition 2.7

[42] Let a continuous mapping G : J R and suppose the second-order q-derivative on interval J , which is identified as D q 2 η 1 G , provided D q 2 η 1 G is q-differentiable on J with D q 2 η 1 G = D η 1 ( D q η 1 G ) : J R . Analogously, we present higher order q-derivative on J , D q n η 1 : J κ R .

Definition 2.8

[42] Let a continuous mapping G : J R R and its q-integral on J is presented as

(2.9) η 1 z G ( ξ ) η 1 d q 1 ξ = ( 1 q ) ( z η 1 ) n = 0 q n G ( q n z + ( 1 q n ) η 1 )

for z J . Also, if c 1 ∈ (η 1z), then the definite q-integral on J is stated as follows:

c 1 z G ( ξ ) η 1 d q 1 ξ = η 1 z G ( ξ ) d q 1 η 1 ξ η 1 c 1 G ( ξ ) d q 1 η 1 ξ = ( 1 q ) ( z η 1 ) n = 0 q n G ( q n z + ( 1 q n ) η 1 ) ( 1 q ) ( c 1 η 1 ) n = 0 q n G ( q n c 1 + ( 1 q n ) η 1 ) ,

It is observed that if η 1 = 0, then we have the classical q-integral, which is stated as

(2.10) 0 z G ( ξ ) d q 1 0 ξ = ( 1 q ) z n = 0 q n G ( q n z ) for z [ 0 , ) .

Theorem 2.1

[42] Let two continuous functions G , g 1 : J R with c R . Then, for z J ,

η 1 z [ G ( ξ ) + g 1 ( z ) ] η 1 d q 1 ξ = c 1 z G ( ξ ) d q 1 η 1 ξ + c 1 z g 1 ( ξ ) d q 1 η 1 ξ ; c 1 z ( c G ) ( ξ ) d q 1 η 1 ξ = c c 1 z G ( ξ ) d q 1 η 1 ξ .

Additionally, we propose the q-analogues of η 1 and ( z η 1 ) n and the concept of q-beta function.

Definition 2.9

[43] For any real number η 1,

(2.11) [ η 1 ] = q n 1 q 1

is known as the q-analogue of η 1. Specifically, if n Z + , we symbolize

[ n ] = q n 1 q 1 = q n 1 + + q + 1 .

Definition 2.10

[43] If n is an integer, the q-analogue of ( z η 1 ) n is the polynomial

(2.12) ( z η 1 ) q n = 1 , if n = 0 , ( z η 1 ) ( z q η 1 ) ( z q n 1 η 1 ) , if n 1 .

Definition 2.11

For any ξζ > 0, 

(2.13) B q ( ξ , ζ ) = 0 1 z ξ 1 ( 1 q z ) q ζ 1 d q 0 z

is called the q-beta function. It is observe that

(2.14) B q ( ξ , 1 ) = 0 1 z ξ 1 d q 0 z = 1 [ ξ ] ,

where [ξ] is the q-analogue of ξ.

The succeeding lemmas will be needed in the proof of our theorems.

Lemma 2.2

Assume that G ( z ) = 1 , then

0 1 d q 0 z = ( 1 q ) n = 0 q n = 1 .

Lemma 2.3

Assume that G ( z ) = z for z ∈ [η 1η 2], then

0 1 z d q 0 z = ( 1 q ) n = 0 q 2 n = 1 1 + q .

Lemma 2.4

Assume that G ( z ) = 1 q z for z ∈ [η 1η 2] and 0 < q < 1 be a constant, then

0 1 ( 1 q z ) d q 0 z = 0 1 d q 0 z q 0 1 z d q 0 z = 1 1 + q .

Lemma 2.5

Assume that G ( z ) = z ( 1 q z ) for z ∈ [η 1η 2] and 0 < q < 1 be a constant, then

0 1 z ( 1 q z ) d q 0 z = 0 1 z d q 0 z q 0 1 z 2 d q 0 z = 1 1 + q q ( 1 q ) n = 0 q 3 n = 1 ( 1 + q ) ( 1 + q + q 2 ) .

In ref. [44], Vivas-Cortez et al. derived the following q-integral identity for generalized ψ-convex functions.

Lemma 2.6

[44] Let υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a continuous and twice q-differentiable function G : ϒ = [ υ 1 , υ 1 + υ 1 , υ 2 ϑ ( υ 2 υ 1 ) ] R R on ϒ (the interior of ϒ) having υ 1 , υ 2 ϑ ( υ 2 υ 1 ) > 0 such that D q 2 η 1 G is integrable on [ υ 1 , υ 1 + υ 1 , υ 2 ϑ ( υ 2 υ 1 ) ] . Then the following equality holds:

(2.15) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) × η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q × 0 1 ξ ( 1 q ξ ) D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ .

Striving by the abovementioned work, the presentation of this paper is as follows: In Section 3, the ℋℋ -type variants for generalized ψ-s-convex functions are demonstrated by using new quantum integral identity. In Section 4, numerous novel q-estimates of ℋℋ -type variants for generalized ψ-quasi-convex functions for twice q-differentiable functions are generalized in detail. Taking these findings into account, we derive certain quantum bounds for the aforesaid functional classes. Remarkable special cases are established. A detailed conclusion with open problems is presented in Section 5.

3 Differentiable ℋℋ -type inequalities for generalized ψ-s-convex functions

The main purpose of this article is to establish some variants of ℋℋ -type inequalities for ψ-s-convex functions. In what follows, we use Lemma 2.6.

Theorem 3.1

Let s ∈ (0, 1], υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ. If D q 2 η 1 G α is a generalized ψ-s-convex function on ϒ for α ≥ 1,  and α −1 + β −1 = 1,  then

(3.1) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( β + 1 , β + 1 ) 1 β × [ s + 1 ] q 2 s 1 2 s 1 D q 2 η 1 G ( η 1 ) α + D q 2 η 1 G ( η 2 ) α [ s + 1 ] q 1 / α .

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-s-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β ( 1 q ξ ) β d q 0 ξ 1 β × 0 1 D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( β + 1 , β + 1 ) 1 β × 0 1 ( 1 ξ ) s D q 2 η 1 G ( η 1 ) α + ξ s D q 2 η 1 G ( η 2 ) α d q 0 ξ 1 / α = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( β + 1 , β + 1 ) 1 β × [ s + 1 ] q 2 s 1 2 s 1 D q 2 η 1 G ( η 1 ) α + D q 2 η 1 G ( η 2 ) α [ s + 1 ] q 1 / α .

This completes the proof of Theorem 3.5.□

Corollary 3.2

If in Theorem 3.5 letting D q 2 η 1 G , then we get

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( β + 1 , β + 1 ) 1 β × [ s + 1 ] q 2 s 1 2 s 2 1 [ s + 1 ] q 1 / α .

Remark 3.1

Letting s = 1, then inequality (3.1) coincides with Theorem 6 in ref. [44].

Theorem 3.3

Let s ∈ (0, 1], υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-s-convex function on ϒ for α ≥ 1,  and α −1 + β −1 = 1, then

(3.2) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 q + 1 1 1 α × A 1 ( q ; ξ ) D q 2 η 1 G ( η 1 ) α + A 2 ( q ; ξ ) D q 2 η 1 G ( η 2 ) α 1 / α ,

where

A 1 ( q ; ξ ) 2 1 s B q ( α + 1 , 2 ) B q ( s + 1 , α + 1 )

and

A 2 ( q ; ξ ) B q ( α + 1 , s + 2 ) .

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-s-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ d q 0 ξ 1 1 α × 0 1 ξ ( 1 q ξ ) α D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 q + 1 1 1 α × 0 1 ξ ( 1 q ξ ) α ( 1 ξ ) s D q 2 η 1 G ( η 1 ) α + ξ s D q 2 η 1 G ( η 2 ) α d q 0 ξ 1 / α = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 q + 1 1 1 α × 0 1 ξ ( 1 q ξ ) α ( 2 1 s ξ s ) D q 2 η 1 G ( η 1 ) α + ξ s D q 2 η 1 G ( η 2 ) α d q 0 ξ 1 / α = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 q + 1 1 1 α × A 1 ( q ; ξ ) D q 2 η 1 G ( η 1 ) α + A 2 ( q ; ξ ) D q 2 η 1 G ( η 2 ) α 1 / α ,

where

A 1 ( q ; ξ ) 0 1 ξ ( 2 1 s ξ s ) ( 1 q ξ ) α d q 0 ξ = 2 1 s B q ( α + 1 , 2 ) B q ( s + 1 , α + 1 )

and

A 2 ( q ; ξ ) 0 1 ξ s + 1 ( 1 q ξ ) α d q 0 ξ = B q ( α + 1 , s + 2 ) .

This completes the proof of Theorem 3.3.□

Corollary 3.4

If in Theorem 3.3, letting D q 2 η 1 G , then we get

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 q + 1 1 1 α × A 1 ( q ; ξ ) + A 2 ( q ; ξ ) 1 / α .

Remark 3.2

Letting s = 1, then inequality (3.2) coincides with Theorem 11 in ref. [44].

Theorem 3.5

Let s ∈ (0, 1], υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-s-convex function on ϒ for α ≥ 1,  and α −1 + β −1 = 1,  then

(3.3) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q A 3 ( q ; ξ ) D q 2 η 1 G ( η 1 ) α + A 4 ( q ; ξ ) D q 2 η 1 G ( η 2 ) α 1 / α ,

where

A 3 ( q ; ξ ) 2 1 s B q ( α + 1 , α + 1 ) B q ( α + s + 1 , α + 1 )

and

A 4 ( q ; ξ ) B q ( α + s + 1 , α + 1 ) .

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-s-convex function with Hölder’s inequality and from Lemma 2.6, we have

(3.4) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 d q 0 ξ 1 β × 0 1 ξ α ( 1 q ξ ) α D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 d q 0 ξ 1 β × 0 1 ξ α ( 1 q ξ ) α ( 1 ξ ) s D q 2 η 1 G ( η 1 ) α + ξ s D q 2 η 1 G ( η 2 ) α d q 0 ξ 1 / α .

Applying Lemma 2.5, we have

(3.5) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q A 3 ( q ; ξ ) D q 2 η 1 G ( η 1 ) α + A 4 ( q ; ξ ) D q 2 η 1 G ( η 2 ) α 1 / α ,

using the fact that

A 3 ( q ; ξ ) 0 1 ξ α ( 1 q ξ ) α ( 1 ξ ) s d q 0 ξ = 2 1 s B q ( α + 1 , α + 1 ) B q ( α + s + 1 , α + 1 )

and

A 4 ( q ; ξ ) 0 1 ξ α ( 1 q ξ ) α ξ s d q 0 ξ = B q ( α + s + 1 , α + 1 ) .

This completes the proof of Theorem 3.5.□

4 ℋℋ -type inequalities for generalized ψ-quasi-convex functions

The main purpose of this article is to establish some variants of ℋℋ -type inequalities for ψ-convex functions. In what follows, we use Lemma 2.6.

Theorem 4.1

Let υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-quasi-convex function on ϒ for α ≥ 1,  and α −1 + β −1 = 1,  then

(4.1) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 1 + q 1 1 / α × Ω 1 ( q ; ξ ) sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α ,

where

(4.2) Ω 1 ( q ; ξ ) ( 1 q ) n = 0 q 2 n ( 1 q n + 1 ) α .

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-quasi-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ 0 d q ξ 1 1 α × 0 1 ξ ( 1 q ξ ) α D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ 0 d q ξ 1 1 α × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 0 1 ξ ( 1 q ξ ) α d q 0 ξ 1 / α .

Applying Lemma 2.3, we have

(4.3) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 1 + q 1 1 / α × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α × 0 1 ξ ( 1 q ξ ) α d q 0 ξ 1 / α = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 1 + q 1 1 / α × Ω 1 ( q ; ξ ) sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α ,

using the fact that

Ω 1 ( q ; ξ ) 0 1 ξ ( 1 q ξ ) α d q 0 ξ = ( 1 q ) n = 0 q 2 n ( 1 q n + 1 ) r .

This completes the proof of Theorem 4.1.□

Corollary 4.2

If α is taken to be positive integer, then under the assumption of Theorem 4.1, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 1 + q 1 1 / α × B q ( α + 1 , 2 ) sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α .

Remark 4.1

If in Theorem 4.1 it is taken limit when q → 1 and υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1

G ( η 1 ) + G ( η 2 ) 2 1 η 2 η 1 η 1 η 2 G ( z ) d z ( η 2 a 1 ) 2 4 2 ( α + 1 ) ( α + 2 ) 1 / α sup G ( η 1 ) α , G ( η 2 ) α 1 / α .

This coincides with Theorem 2 in ref. [45].

Theorem 4.3

Let υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-quasi-convex function on ϒ for αβ > 1,  and α −1 + β −1 = 1,  then

(4.4) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q Ω 2 ( q ; ξ ) 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α ,

where

Ω 2 ( q ; ξ ) ( 1 q ) n = 0 q n ( β + 1 ) ( 1 q n + 1 ) β .

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-quasi-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β ( 1 q ξ ) β d q 0 ξ 1 β × 0 1 D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β ( 1 q ξ ) β d q 0 ξ 1 β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 0 1 d q 0 ξ 1 / α .

Applying Lemma 2.2, we have

(4.5) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q Ω 2 ( q ; ξ ) 1 / α × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α ,

using the fact that

Ω 2 ( q ; ξ ) 0 1 ξ β ( 1 q ξ ) β d q 0 ξ = ( 1 q ) n = 0 q n ( β + 1 ) ( 1 q n + 1 ) β .

This completes the proof of Theorem 4.3.□

Corollary 4.4

If β > 1 is taken to be positive integer, then under the assumption of Theorem 4.3, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( β + 1 , β + 1 ) 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α .

Remark 4.2

If in Theorem 4.1 it is taken limit when q → 1 and υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1

G ( η 1 ) + G ( η 2 ) 2 1 η 2 η 1 η 1 η 2 G ( z ) d z ( η 2 η 1 ) 2 8 π 2 1 / β Γ ( 1 + β ) Γ ( 1.5 + β ) 1 / β × sup G ( η 1 ) α , G ( η 2 ) α 1 / α .

This coincides with the result in ref. [1].

Theorem 4.5

Let υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0), …, ϑ(κ), …) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-quasi-convex function on ϒ for αβ > 1,  and α −1 + β −1 = 1,  then

(4.6) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q Ω 3 ( q ; ξ ) 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 + q 1 / α ,

where

Ω 3 ( q ; ξ ) ( 1 q ) n = 0 q 2 n ( 1 q n + 1 ) β .

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-quasi-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) β d q 0 ξ 1 β × 0 1 ξ D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) β d q 0 ξ 1 β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 0 1 ξ d q 0 ξ 1 / α .

Applying Lemma 2.3, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q Ω 3 ( q ; ξ ) 1 / α × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 + q 1 / α ,

using the fact that

Ω 3 ( q ; ξ ) 0 1 ξ ( 1 q ξ ) β d q 0 ξ = ( 1 q ) n = 0 q 2 n ( 1 q n + 1 ) β .

This completes the proof of Theorem 4.5.□

Corollary 4.6

If β > 1 is taken to be positive integer, then under the assumption of Theorem 4.5, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( 2 , β + 1 ) 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 + q 1 / α .

Remark 4.3

If in Theorem 4.1 it is taken limit when q → 1 and υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1

G ( η 1 ) + G ( η 2 ) 2 1 η 2 η 1 η 1 η 2 G ( z ) d z ( η 2 η 1 ) 2 2 . 2 1 / α B ( 2 , β + 1 ) 1 / β sup G ( η 1 ) α , G ( η 2 ) α 1 / α .

This coincides with the result in ref. [45].

Theorem 4.7

Let υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-quasi-convex function on ϒ for αβ > 1,  and α −1 + β −1 = 1,  then

(4.7) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 [ q + 1 ] 1 / β × Ω 4 ( q ; ξ ) sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α ,

where

Ω 4 ( q ; ξ ) ( 1 q ) n = 0 q n ( 1 q n + 1 ) α

and [β + 1] is the q-analogue of β + 1.

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-quasi-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β d q 0 ξ 1 β × 0 1 ( 1 q ξ ) α D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β d q 0 ξ 1 β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 0 1 ( 1 q ξ ) α d q 0 ξ 1 / α .

In view of Definition 2.11, we obtain

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 [ β + 1 ] 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 0 1 ( 1 q ξ ) α d q 0 ξ 1 / α = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 [ β + 1 ] 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α ,

using the fact that

Ω 4 ( q ; ξ ) 0 1 ( 1 q ξ ) α d q 0 ξ = ( 1 q ) n = 0 q n ( 1 q n + 1 ) α .

This completes the proof of Theorem 4.7.□

Corollary 4.8

If α > 1 is taken to be positive integer, then under the assumption of Theorem 4.5, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 [ β + 1 ] 1 / β × B q ( α + 1 , 1 ) sup D q 2 η 1 G ( η 1 ) α + D q 2 η 1 G ( η 2 ) α 1 / α .

Remark 4.4

If in Theorem 4.1 it is taken limit when q → 1 and υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1 , we have a new result

(4.8) G ( η 1 ) + G ( η 2 ) 2 1 η 2 η 1 η 1 η 2 G ( z ) d z ( η 2 η 1 ) 2 2 1 β + 1 1 / β × sup G ( η 1 ) α + G ( η 2 ) α α + 1 1 / α .

Theorem 4.9

Let s ∈ (0, 1], υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0), …, ϑ(κ), …) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-quasi-convex function on ϒ for α, β > 1, and α −1 + β −1 = 1, then

(4.9) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q Ω 5 ( q ; ξ ) 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α [ α + 1 ] 1 / α ,

where

Ω 5 ( q ; ξ ) ( 1 q ) n = 0 q n ( 1 q n + 1 ) β

and [α + 1] is the q-analogue of α + 1.

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-quasi-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ( 1 q ξ ) β d q 0 ξ 1 β × 0 1 ξ α D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q ( 1 q ξ ) β d q 0 ξ 1 β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 0 1 ξ α d q 0 ξ 1 / α .

In view of Definition (2.11), we obtain

(4.10) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q Ω 5 ( q ; ξ ) 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α [ α + 1 ] 1 / α ,

using the fact that

Ω 5 ( q ; ξ ) 0 1 ( 1 q ξ ) β d q 0 ξ = ( 1 q ) n = 0 q n ( 1 q n + 1 ) β .

This completes the proof of Theorem 4.7.□

Corollary 4.10

If β > 1 is taken to be a positive integer, then under the assumption of Theorem 4.9, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( β + 1 , 1 ) 1 / β × sup D q 2 η 1 G ( η 1 ) α + D q 2 η 1 G ( η 2 ) α [ α + 1 ] 1 / α .

Remark 4.5

If in Theorem 4.9 it is taken limit when q → 1 and υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1 , then (4.9) reduces to (4.8).

Theorem 4.11

Let s ∈ (0, 1], υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0), …, ϑ(κ), …) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-quasi-convex function on ϒ for αβ > 1,  and α −1 + β −1 = 1,  then

(4.11) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( α + 1 , 2 ) 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α q + 1 1 / α .

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-quasi-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β ( 1 q ξ ) d q 0 ξ 1 β × 0 1 ( 1 q ξ ) D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β ( 1 q ξ ) d q 0 ξ 1 β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 0 1 ( 1 q ξ ) d q 0 ξ 1 / α .

In view of Lemma 2.4 and using the fact that ( 1 q ξ ) = ( 1 q ξ ) q 1 , we obtain

(4.12) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β ( 1 q ξ ) q 1 d q 0 ξ 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 + q 1 / α = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q B q ( β + 1 , 2 ) 1 / β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 + q 1 / α .

This completes the proof of Theorem 4.11.□

Remark 4.6

If in Theorem 4.11 it is taken limit when q → 1 and υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1 , then (4.11) coincides with the result in ref. [45].

Theorem 4.12

Let s ∈ (0, 1], υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a twice q-differentiable function G : ϒ R R defined on ϒ such that D q 2 η 1 G continuous on ϒ.  If D q 2 η 1 G α is a generalized ψ-quasi-convex function on ϒ for αβ > 1 and α −1 + β −1 = 1,  then

(4.13) q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 ( 1 + q ) 2 ( 1 + q + q 2 ) × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α .

Proof

Utilizing the fact that D q 2 η 1 G α is a generalized ψ-quasi-convex function with Hölder’s inequality and from Lemma 2.6, we have

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z = q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) D q 2 η 1 × G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) d q 0 ξ q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ ( 1 q ξ ) d q 0 ξ 1 1 α × 0 1 ( 1 q ξ ) D q 2 η 1 G ( η 1 + ξ υ 1 , υ 2 ϑ ( η 2 η 1 ) ) α d q 0 ξ 1 / α q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 0 1 ξ β ( 1 q ξ ) d q 0 ξ 1 β × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 0 1 ( 1 q ξ ) d q 0 ξ 1 / α .

In view of Lemma 2.5, we obtain

q G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 1 + q 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d q η 1 z q 2 ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 + q 1 ( 1 + q ) ( 1 + q + q 2 ) 1 1 / α × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α ( 1 + q ) ( 1 + q + q 2 ) 1 / α .

This completes the proof of Theorem 4.12.□

Remark 4.7

If in Theorem 4.12 it is taken limit when q → 1 and υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1 , then (4.13) coincides with the result in ref. [1].

5 Application

Specifically, in Definition 2.5 for υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1 , the generalized ψ-quasi-convex functions coincide with the quasi-convex functions. Moreover, if we put s = 1 along with υ 1 , υ 2 ϑ ( η 2 η 1 ) = η 2 η 1 , in Definition 2.4, then the generalized ψ-convex functions reduce to the classical convex functions. Moreover, the q-integral inequalities would lead to the corresponding classical integral variants by selecting q ↦ 1. Thus, various novel and earlier consequences can be obtained from Results in Sections 3 and 4 as special cases. Here, we illustrate the applications of our main results by further investigations.

Proposition 5.1

In the recent research, Zhuang et al. [46] established the q-integral inequalities for quasi-convex functions, the following inequality is stated as:

q G ( η 1 ) + G ( η 2 ) 1 + q 1 η 2 η 1 η 1 η 2 G ( z ) d q η 1 z q 2 ( η 2 η 1 ) 2 1 + q 1 1 + q 1 1 / α × Ω 1 ( q ; ξ ) sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α ,

where Ω1(qξ) is defined as in (4.2).

In the following, we present a new analogous to inequality (4.1), which can be obtained directly by choosing q ↦ 1 in Theorem 4.1.

Corollary 5.1

Let υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1. Suppose that a twice differentiable function G : ϒ R R defined on ϒ such that G L 1 [ η 1 , η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ] with υ 1 , υ 2 ϑ ( η 2 η 1 ) > 0 . If G α is a generalized ψ-quasi-convex function on ϒ for α ≥ 1 and α −1 + β −1 = 1. Then the following inequality holds: In the following, we present another new analogous to inequality (4.1), which can be obtained directly by choosing q ↦ 1 in Theorem 4.1.

G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d z ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 4 2 ( α + 1 ) ( α + 2 ) 1 / α × sup G ( η 1 ) α , G ( η 2 ) α 1 / α .

Proposition 5.2

In ref. [46], Zhuang et al. derived another q-integral inequality for quasi-convex functions, the following inequality is stated as:

q G ( η 1 ) + G ( η 2 ) 1 + q 1 η 2 η 1 η 1 η 2 G ( z ) d q η 1 z q 2 ( η 2 η 1 ) 2 ( 1 + q ) 2 ( 1 + q + q 2 ) × sup D q 2 η 1 G ( η 1 ) α , D q 2 η 1 G ( η 2 ) α 1 / α .

Corollary 5.2

Let υ 1υ 2 > 0 with a bounded sequence of real numbers ϑ = (ϑ(0),…, ϑ(κ),…) and 0 < q < 1.  Suppose that a twice differentiable function G : ϒ R R defined on ϒ such that G L 1 [ η 1 , η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ] with υ 1 , υ 2 ϑ ( η 2 η 1 ) > 0 . If G α is a generalized ψ-quasi-convex function on ϒ for α ≥ 1 and α −1 + β −1 = 1. Then the following inequality holds:

G ( η 1 ) + G ( η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 1 υ 1 , υ 2 ϑ ( η 2 η 1 ) η 1 η 1 + υ 1 , υ 2 ϑ ( η 2 η 1 ) G ( z ) d z ( υ 1 , υ 2 ϑ ( η 2 η 1 ) ) 2 12 sup G ( η 1 ) α , G ( η 2 ) α 1 / α .

6 Conclusion

Recently, trapezoid-type inequalities have a significant contribution to the improvements of all areas of mathematical sciences. It has momentous investigations in the variability of applied analysis, for example, coding theory, geometric function theory, fractional calculus, impulsive diffusion equations and numerical analysis. Recently, several researchers have explored new ℋℋ -type variants for diverse kinds of convexities, preinvexities, statistical theory and so on. In the present investigation, we utilized a novel q-integral identity obtained in ref. [44] (Lemma 6) to explore certain quantum bounds for ℋℋ -type variants via newly introduced notions, generalized ψ-s-convex and generalized ψ-quasi-convex functions are elaborated. New theorem and new cases have been discussed in connection with Hölder and power mean inequality. Our consequences deduced several existing results in the related literature. Since q-calculus theory has potential utilities in special relativity theory, quantum mechanics and q-Hahn fractional calculus, we expect that this novel approach opens many avenues for interested researchers will endure discovering further quantum approximations of ℋℋ -type variants for other classes of convex functions, and, additionally, to discover uses in the aforementioned scientific disciplines.

Acknowledgements

The authors would like to express their sincere thanks to the referee and Editor.

  1. Availability of supporting data: Not applicable. Competing interests: The authors declare that they have no competing interests.

  2. Disclosure: The authors declare that they have no competing interests.

  3. Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 61673169).

  4. Author contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] Alomari M , Darus M , Dragomir SS. New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are quasi-convex. Tamkang J. Math. 2010 ;41:353–9.10.5556/j.tkjm.41.2010.498Search in Google Scholar

[2] Dragomir SS , Pearce CEM. Selected topics on Hermite–Hadamard inequalities and applications. RGMIA Monographs, Victoria University, 2000.Search in Google Scholar

[3] Dragomir SS , Agarwal RP. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl Math Lett. 1998 ;11:91–5.10.1016/S0893-9659(98)00086-XSearch in Google Scholar

[4] Dragomir SS. On some new inequalities of Hermite–Hadamard type for m-convex functions. Tamkang J Math. 2002 ;33:55–65.10.5556/j.tkjm.33.2002.304Search in Google Scholar

[5] Rahman G , Nisar KS , Rashid S , Abdeljawad T. Certain Grüss-type inequalities via tempered fractional integrals concerning another function. J Inequal Appl. 2020 ;2020:147.10.1186/s13660-020-02420-xSearch in Google Scholar

[6] Rashid S , Khalid A , Rahman G , Nisar KS , Chu Y-M. On new modifications governed by quantum Hahnas integral operator pertaining to fractional calculus. J Fun Spaces. 2020 ;2020:8262860.Search in Google Scholar

[7] Xu L , Chu Y-M , Rashid S , El-Deeb AA , Nisar KS. On new unified bounds for a family of functions via fractional q-calculus theory. J Fun Spaces. 2020 ;2020:4984612.Search in Google Scholar

[8] Rashid S , Hammouch Z , Ashraf R , Baleanu D , Nisar KS. New quantum estimates in the setting of fractional calculus theory. Adv Differ Equ. 2020 ;2020:383.10.1186/s13662-020-02843-2Search in Google Scholar

[9] Rashid S , Noor MA , Nisar KS , Baleanu D , Rahman G. A new dynamic scheme via fractional operators on time scale. Front Phys. 2020;8:165. 10.3389/fphy.2020.00165.Search in Google Scholar

[10] Rashid S , Jarad F , Noor MA , Kalsoom H , Chu Y-M. Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics. 2019 ;7:1225, 10.3390/math7121225.Search in Google Scholar

[11] Khan Z , Rashid S , Ashraf R , Baleanu D , Chu Y-M. Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property. Adv Differ Equ. 2020; 2020. 10.1186/s13662-020-03121-x.Search in Google Scholar

[12] Chen S-B , Rashid S , Hammouch Z , Noor MA , Ashraf R , Chu Y-M. Integral inequalities via Rainaas fractional integrals operator with respect to a monotone function. Adv Differ Equ. 2020 ;2020:647.10.1186/s13662-020-03108-8Search in Google Scholar

[13] Rashid S , Ashraf R , Nisar KS , Abdeljawad T. Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense. J Math. 2020 ;2020:1626091, 10.1155/2020/1626091.Search in Google Scholar

[14] Abdeljawad T , Rashid S , Hammouch Z , Chu Y-M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv Differ Equ. 2020 ;2020, 10.1186/s13662-020-02955-9.Search in Google Scholar

[15] Niculescu, CP. An invitation to convex function theory. in: R. Cristescu (Ed.), In order structures in functional analysis, academiei Romane, Bucharest, Romania, 2006, V; 67–132.Search in Google Scholar

[16] Bennett C , Sharpley R. Interpolation of operators. Academic Press, Boston, MA, USA, 1988.Search in Google Scholar

[17] Omotoyinbo O , Mogbodemu A. Some new Hermite–Hadamard integral inequalities for convex functions. Int J Sci Innovation Tech. 2002 ;1:12.Search in Google Scholar

[18] Kumar S , Kumar A , Samet B , Gomez-Aguilar JF , Osman MS. A chaos study of tumor and effector cells in fractional tumor-immune model for cancer treatment. Chaos Solitons Fractals. 2020 ;141:110321.10.1016/j.chaos.2020.110321Search in Google Scholar

[19] Kumar S , Ghosh S , Kumar R , Jleli M. A fractional model for population dynamics of two interacting species by using spectral and Hermite wavelets methods. Numerical methods Partial Differ Equs. 2020:1–21. 10.1002/num.22602.Search in Google Scholar

[20] Kumar S , Kumar A , Samet B , Dutta H. A study on fractional host-parasitoid populationdynamical model to describe insect species. Numerical methods Partial Differ Equs. 2020:1–20. 10.1002/num.22603.Search in Google Scholar

[21] Ghanbari B , Kumar S , Kumar R. A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative. Chaos Solitons Fractals 2020 ;133:109619 10.1016/j.chaos.2020.109619Search in Google Scholar

[22] Younus A , Asif M , Alzabut J , Ghaffar A , Nisar KS. A new approach to interval-valued inequalities. Adv Differ Equ. 2020 ;2020:319.10.1186/s13662-020-02781-zSearch in Google Scholar

[23] Chen S-B , Rashid S , Noor MA , Ashraf R , Chu Y-M. A new approach on fractional calculus and probability density function. AIMS Mathematics. 2020 ;5:7041–54.10.3934/math.2020451.Search in Google Scholar

[24] Rashid S , Baleanu D , Chu Y-M. Some new extensions for fractional integral operator having exponential in the kernel and their applications in physical systems. Open Phys. 2020;18:478–91. 10.1515/phys-2020-0114.Search in Google Scholar

[25] Abdeljawad T , Rashid S , Hammouch Z , Chu Y-M. Some new local fractional inequalities associated with generalized (s, m)-convex functions and applications. Adv Differ Equ. 2020 ;2020:406.10.1186/s13662-020-02865-wSearch in Google Scholar

[26] Rezapour S , Samei ME. On the existence of solutions for a multi-singular pointwise defined fractional q-integro-differential equation. Boundary Val Prob. 2020 ;2020:38.10.1186/s13661-020-01342-3Search in Google Scholar

[27] Rezapour S , Samei ME. On a fractional q-differential inclusion on a time scale via endpoints and numerical calculations. Adv Differ Equ. 2020 ;2020:460.10.1186/s13662-020-02923-3Search in Google Scholar

[28] Phuong ND , Sakar FM , Etemad S , Rezapour S. A novel fractional structure of a multi-order quantum multi-integro-differential problem. Adv Differ Equ. 2020 ;2020:633.10.1186/s13662-020-03092-zSearch in Google Scholar

[29] Liang S , Samei ME. New approach to solutions of a class of singular fractional q-differential problem via quantum calculus. Adv Differ Equ. 2020 ;2020:14 10.1186/s13662-019-2489-2Search in Google Scholar

[30] Nisar KS , Rahman G , Baleanu D , Samraiz M , Iqbal S. On the weighted fractional Pólya-Szegö and Chebyshev-types integral inequalities concerning another function. Adv Differ Equ. 2020 ;2020:623.10.1186/s13662-020-03075-0Search in Google Scholar

[31] Rahman G , Nisar KS , Abdeljawad T , Samraiz M. New tempered fractional Pólya-Szegö and Chebyshev-Type inequalities with respect to another function. J Mathematics. 2020 ;2020:9858671.10.1155/2020/9858671Search in Google Scholar

[32] Nisar KS , Sharma V , Khan A. Lupaş blending functions with shifted knots and q-Bézier curves. J Inequal Appl. 2020 ;2020:184.10.1186/s13660-020-02450-5Search in Google Scholar

[33] Nisar KS , Khan WA. Notes on q-Hermite based unified Apostol type polynomials. J Interdisciplinary Math. 2019 ;22:1185–203.10.1080/09720502.2019.1709317Search in Google Scholar

[34] Iqbal S , Khan MA , Abdeljawad T , Samraiz M , Rahman G , Nisar KS. New general Grüss-type inequalities over σ-finite measure space with applications. Adv Differ Equ. 2020 ;2020:468.10.1186/s13662-020-02933-1Search in Google Scholar

[35] Ernst T. The history of Q-calculus and new method. Department of Mathematics, Uppsala University, Sweden, 2000.Search in Google Scholar

[36] Jackson FH. On a q-definite integrals. Quart J Pure Appl Math. 1910 ;41:193–203.Search in Google Scholar

[37] Agarwal R. A propos daune note de m. pierre humbert. Comptes rendus de l’Academie des Sciences. 1953 ;236:2031–2.Search in Google Scholar

[38] Al-Salam W. Some fractional q-integrals and q-derivatives. Proceedings of the Edinburgh Mathematical Society. 1967 ;15:135–40.10.1017/S0013091500011469Search in Google Scholar

[39] Alp N , Sarikaya MZ , Kunt M , İşcan İ. q-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J King Saud Univ Sci. 2018 ;30:193–203.10.1016/j.jksus.2016.09.007Search in Google Scholar

[40] Raina RK. On generalized Wrightas hypergeometric functions and fractional calculus operators. East As Math J. 2015 ;21:191–203.Search in Google Scholar

[41] Vivas-Cortez MJ , Kashuri A , Hernández Hernández JE. Trapezium-type inequalities for the Raina’s fractionalintegrals operator via generalized convex. J Math Inequal. 2019, in press.10.3390/sym12061034Search in Google Scholar

[42] Tariboon J , Ntouyas SK. Quantum integral inequalities on finite intervals. J Inequal Appl. 2014 ;2014.10.1186/1029-242X-2014-121Search in Google Scholar

[43] Kac V , Cheung P. Quantum calculus. Universitext. Springer, New York, 2002.10.1007/978-1-4613-0071-7Search in Google Scholar

[44] Vivas-Cortez MG , Liko R , Kashuri A , Hernández Hernández JE. New quantum estimates of trapezium-typeinequalities for generalized ϕ-convex functions. Mathematics. 2019 ;7:1047.10.3390/math7111047Search in Google Scholar

[45] Özdemir ME. On Iyengar-type inequalities via quasi-convexity and quasi-concavity. Miskolc Math Notes. 2014 ;15:171–81.10.18514/MMN.2014.644Search in Google Scholar

[46] Zhuang H , Liu W , Park J. Some quantum estimates of Hermite–Hadamard inequalities for quasi-convex functions. Mathematics. 2019 ;7.10.3390/math7020152Search in Google Scholar

Received: 2020-11-05
Revised: 2020-12-08
Accepted: 2021-01-14
Published Online: 2021-02-25

© 2021 Saima Rashid et al., published by DeGruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/phys-2021-0001/html
Scroll to top button