Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 29, 2021

Generalized Minkowski type inequality for pseudo-integral

  • Mirjana Štrboja and Biljana Mihailović EMAIL logo
From the journal Mathematica Slovaca

Abstract

In this paper some properties of the pseudo-integral are summarized and a characterization theorem for this integral is proposed. Using the characterization theorem, we obtain that the pseudo-integral with respect to the pseudo-product of two σ-⊕-measures can be reduced to repeated pseudo-integrals. As a consequence of that claim and the Hölder type inequality for the pseudo-integral, we get the generalized Minkowski inequality for the pseudo-integral.

MSC 2010: 28A25; 28E10; 60E15

Acknowledgement

The authors acknowledge the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (the first author: Grant No. 451-03-68/2020-14/200125, the second author: the project “Innovative scientific and artistic research from the FTS (activity) domain”, Grant No. 451-03-68/2020-14/200156).

  1. (Communicated by Anatolij Dvurečenskij)

References

[1] Agahi, H.—Mesiar, R.: Stolarsky’s inequality for Choquet-like expectation, Math. Slovaca 66 (2016), 1235–1248.10.1515/ms-2016-0219Search in Google Scholar

[2] Agahi, H.—Mesiar, R.—Babakhani, A.: Generalized expectation with general kernels on g-semirings and its applications, RACSAM 111 (2017), 863–875.10.1007/s13398-016-0322-2Search in Google Scholar

[3] Agahi, H.—Mesiar, R.—Ouyang, Y.: Chebyshev type inequalities for pseudo-integrals, Nonlinear Anal. Theory Methods Appl. 72 (2010), 2737–2743.10.1016/j.na.2009.11.017Search in Google Scholar

[4] Agahi, H.—Mesiar, R.—Ouyang, Y.—Pap, E.—Štrboja, M.: Berwald type inequality for Sugeno integral, Appl. Math. Comput. 217 (2010), 4100–4108.10.1016/j.amc.2010.10.027Search in Google Scholar

[5] Agahi, H.—Mesiar, R.—Ouyang, Y.—Pap, E.—Štrboja, M.: Hölder and Minkowski type inequalities for pseudo-integral, Appl. Math. Comput. 217 (2011), 8630–8639.10.1016/j.amc.2011.03.100Search in Google Scholar

[6] Akian, M.: Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc. 351 (1999), 4515–4543.10.1090/S0002-9947-99-02153-4Search in Google Scholar

[7] Benvenuti, P.—Mesiar, R.—Vivona, D.: Monotone set functions-based integrals. In: Handbook of Measure Theory, vol. II, (E. Pap, eds.), Elsevier, North-Holland, 2002, pp. 1329–1379.10.1016/B978-044450263-6/50034-8Search in Google Scholar

[8] Borcová, J.—Halčinová, L.—Hutník, O.: The smallest semicopula-based universal integrals: Remarks and improvements, Fuzzy Sets and Systems 393 (2020), 29–52.10.1016/j.fss.2019.05.010Search in Google Scholar

[9] Choquet, G.: Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953–1954), 131–292.10.5802/aif.53Search in Google Scholar

[10] De Cooman, G.: Possibility theory I: the measure- and integral-theoretic groundwork, Int. J. General Systems 25 (1997), 291–323.10.1080/03081079708945160Search in Google Scholar

[11] Denneberg, D.: Non-additive Measure and Integral, Kluwer Academic Publisher, Dordrecht-Boston-London, 1994.10.1007/978-94-017-2434-0Search in Google Scholar

[12] Gal, S.G.: On a Choquet-Stieltjes type integral on intervals, Math. Slovaca 69 (2019), 801–814.10.1515/ms-2017-0269Search in Google Scholar

[13] Ghirardato, P: On independence for non-additive measures, with a Fubini theorem, J. Econ. Theory 73 (1997), 261–291.10.1006/jeth.1996.2241Search in Google Scholar

[14] Klement, E. P.—Li, J.—Mesiar, R.—Pap, E.: Integrals based on monotone set functions, Fuzzy Sets and Systems 281 (2015), 88–102.10.1016/j.fss.2015.07.010Search in Google Scholar

[15] Klement, E.P.—Mesiar, R.—Pap, E.: A universal integral as common frame for Choquet and Sugeno integral, IEEE Trans. Fuzzy Syst. 18(1) (2010), 178–187.10.1109/TFUZZ.2009.2039367Search in Google Scholar

[16] Kolokoltsov, V. N.—Maslov, V. P.: Idempotent Analysis and Its Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 1997.10.1007/978-94-015-8901-7Search in Google Scholar

[17] Kuich, W.: Semirings, Automata, Languages, Berlin, Springer-Verlag, 1986.10.1007/978-3-642-69959-7Search in Google Scholar

[18] Li, D. Q.—Song, X. Q.—Yue, T.—Song, Y. Z.: Generalization of the Lyapunov type inequality for pseudo-integrals, Appl. Math. Comput. 241 (2014), 64–69.10.1016/j.amc.2014.05.006Search in Google Scholar

[19] Lieb, E. H.—Loss, M.: Analysis, 2nd ed., AMS, Providence, Rhode Island, 1997.Search in Google Scholar

[20] Maslov, V. P.: Asymptotic Methods for Solving Pseudo-differential Equations, Nauka, Moscow, 1987 (in Russian).Search in Google Scholar

[21] Mesiar, R.—Rybárik, J.: PAN-operations structure, Fuzzy Sets and Systems 74 (1995), 365–369.10.1016/0165-0114(94)00314-WSearch in Google Scholar

[22] Mihailović, B.—Manzi, M.—Đapić, P.: The Shilkret-like integral on the symmetric interval, U.P.B. Sci. Bull., Series A 77(3) (2015), 29–40.Search in Google Scholar

[23] Mihailović, B.—Pap, E.—Štrboja, M.—Simićević, A.: A unified approach to the monotone integral-based premium principles under the CPT theory, Fuzzy Sets and Systems 398 (2020), 78–97.10.1016/j.fss.2020.02.006Search in Google Scholar

[24] Mihailović, B.—Štrboja, M.: Generalized Minkowski type inequality for pseudo-integral. In: Proceedings of 15th IEEE International Symposium on Intelligent Systems and Informatics, Subotica, Serbia, 2017, pp. 99–104.Search in Google Scholar

[25] Narukawa, Y.—Torra, V.: Multidimensional generalized fuzzy integral, Fuzzy Sets and Systems 160 (2009), 802–815.10.1016/j.fss.2008.10.006Search in Google Scholar

[26] Pap, E.: An integral generated by decomposable measure, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20(1) (1990), 135–144.Search in Google Scholar

[27] Pap, E: Pseudo-analysis as a mathematical base for soft computing, Soft Comput. 1 (1997), 61–68.10.1007/s005000050007Search in Google Scholar

[28] Pap, E: Null-Additive Set Functions, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995.Search in Google Scholar

[29] Pap, E. (Ed.): Handbook of Measure Theory, Elsevier Science, Amsterdam, 2002.Search in Google Scholar

[30] Pap, E.: Pseudo-additive measures and their applications. In: Handbook of Measure Theory, Vol II, (E. Pap, ed.), Elsevier, 2002, pp. 1403–1465.10.1016/B978-044450263-6/50036-1Search in Google Scholar

[31] Pap, E.: Pseudo-analysis approach to nonlinear partial differential equations, Acta Polytech. Hung. 5 (2008), 31–45.Search in Google Scholar

[32] Pap, E.—Štajner, I.: Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, optimization, system theory, Fuzzy Sets and Systems 102 (1999), 393–415.10.1016/S0165-0114(98)00214-0Search in Google Scholar

[33] Pap, E.—Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral, Inf. Sci. 180 (2010), 543–548.10.1016/j.ins.2009.10.014Search in Google Scholar

[34] Pap, E.—Štrboja, M.: Generalizations of integral inequalities for integrals based on nonadditive measures. In: Intelligent Systems: Models and Application (E. Pap, ed.), Springer, 2013, pp. 3–22.10.1007/978-3-642-33959-2_1Search in Google Scholar

[35] Pap, E.—Štrboja, M.—Rudas, I.: Pseudo-Lpspace and convergence, Fuzzy Sets and Systems 238 (2014), 113–128.10.1016/j.fss.2013.06.010Search in Google Scholar

[36] Qinghe, S.: The convergence theorem and Fubini type theorem for Sugeno’s fuzzy integral. In: Cybernetics and Systems ’90 (R. Trappl, ed.), Kluwer, Holland, 1990, pp. 179–186.Search in Google Scholar

[37] Rudin, W.: Real and Complex Analysis, 3rd ed., McGraw-Hill, New York, 1987.Search in Google Scholar

[38] Shilkret, N.: Maxitive measure and integration, Indag. Math. 33 (1971), 109–116.10.1016/S1385-7258(71)80017-3Search in Google Scholar

[39] Štrboja, M.—Pap, E.—Mihailović, B.: Transformation of the pseudo-integral and related convergence theorems, Fuzzy Sets and Systems 355 (2019), 67–82.10.1016/j.fss.2018.06.010Search in Google Scholar

[40] Štrboja, M.—Pap, E.—Mihailović, B.: Discrete bipolar pseudo-integrals, Inf. Sci. 468 (2018), 72–88.10.1016/j.ins.2018.07.075Search in Google Scholar

[41] Sugeno, M.: Theory of Fuzzy Integrals and its Applications, Ph.D. Dissertation, Tokyo Institute of Technology, 1974.Search in Google Scholar

[42] Todorov, M.—Štrboja, M.—Pap, E.—Mihailović, B.: Jensen type inequality for the bipolar pseudo-integrals, Fuzzy Sets and Systems 379 (2020), 82–101.10.1016/j.fss.2019.04.015Search in Google Scholar

[43] Wang, Z.—Klir, G. J.: Generalized Measure Theory, Springer, Boston, 2009.10.1007/978-0-387-76852-6Search in Google Scholar

[44] Weber, S.: ⊥-decomposable measures and integrals for Archimedean t-conorm, J. Math. Anal. Appl. 101 (1984), 114–138.10.1016/0022-247X(84)90061-1Search in Google Scholar

[45] Yang, Q.: The pan-integral on fuzzy measure space, Fuzzy Math. 3 (1985), 107–114 (in Chinese).Search in Google Scholar

Received: 2020-02-01
Accepted: 2020-03-30
Published Online: 2021-01-29
Published in Print: 2021-02-23

© 2021 Mathematical Institute Slovak Academy of Sciences

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/ms-2017-0452/html
Scroll to top button