Skip to main content

Advertisement

Log in

Impact of peri-implant bone resorption, prosthetic materials, and crown to implant ratio on the stress distribution of short implants: a finite element analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The purpose of this study was to determine the effects of prosthetic materials and crown/implant (C/I) ratio on short implants with a marginal bone resorption. Three-dimensional finite element analysis was used to simulate stress distribution under static loading in non-resorption and resorption scenarios (3-mm vertical bone loss) in implants restored with single crowns and C/I ratios of 1:1, 1.5:1, and 2:1 were evaluated. Different crown materials were used: porcelain-fused to metal, porcelain-fused to zirconia, monolithic zirconia, and zirconia-based crown veneered with indirect composite resin. The C/I ratio, the peri-implant bone resorption, and the loading conditions were the key factors affecting the generated stress in short implants. In non-resorption models, von Mises stress ranged between 50 and 105 MPa whereas in resorption models, the values ranged from 168 to 322 MPa, both increasing with the higher C/I ratio under oblique forces. Under axial loading, the C/I ratio did not influence the stress values as the presence of resorption was the only parameter increasing, 57 MPa for the non-resorption models and 101 MPa for the resorption models, respectively. Preference of a prosthetic material was ineffective on the distribution of stress in the bone and implant structure under static loading in any models. The peri-implant bone resorption and a higher C/I ratio in short implants increase the stress values under both axial and oblique forces, whereas the crown material does not influence stress distribution in the surrounding bone and implant structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xu X, Hu B, Xu Y, Liu Q, Ding H, Xu L (2020) Short versus standard implants for single-crown restorations in the posterior region: a systematic review and meta-analysis. J Prosthet Dent. 24:S0022-3913(19)30670-5

  2. Hagi D, Deporter DA, Pilliar RM, Arenovich T (2004) A targeted review of study outcomes with short (≤7 mm) endosseous dental implants placed in partially edentulous patients. J Periodontol 75:798–804

    CAS  PubMed  Google Scholar 

  3. Karthikeyan I, Desai SR, Singh R (2012) Short implants: a systematic review. J Indian Soc Periodontol 16:302–312

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Malmstrom H, Gupta B, Ghanem A, Cacciato R, Ren Y, Romanos GE (2016) Success rate of short dental implants supporting single crowns and fixed bridges. Clin Oral Implants Res 27:1093–1098

    PubMed  Google Scholar 

  5. Stafford GL (2016) Short implants had lower survival rates in posterior jaws compared to standard implants. Evid Based Dent 17:115–116

    PubMed  Google Scholar 

  6. Papaspyridakos P, de Souza A, Vazouras K, Gholami H, Pagni S, Weber HP (2018) Survival rates of short dental implants (≤6 mm) compared with implants longer than 6 mm in posterior jaw areas: a meta-analysis. Clin Oral Implants Res 16:8–20

    Google Scholar 

  7. Qian J, Wennerberg A, Albrektsson T (2012) Reasons for marginal bone loss around oral implants. Clin Implant Dent Relat Res 14:792–807

    PubMed  Google Scholar 

  8. Monje A, Chan H-L, Fu J-H, Suarez F, Galindo-Moreno P, Wang H-L (2013) Are short dental implants (<10 mm) effective? A meta-analysis on prospective clinical trials. J Periodontol 84:895–904

    PubMed  Google Scholar 

  9. Stacchi C, De Biasi M, Torelli L, Robiony M, Di Lenarda R, Angerame D (2019) Primary stability of short implants inserted using piezoelectric or drilling systems: an in vitro comparison. J Oral Implantol 45:259–266

    PubMed  Google Scholar 

  10. Esposito M, Buti J, Barausse C, Gasparro R, Sammartino G, Felice P (2019) Short implants versus longer implants in vertically augmented atrophic mandibles: a systematic review of randomised controlled trials with a 5-year post-loading follow-up. Int J Oral Implantol (Berl) 12:267–280

    Google Scholar 

  11. Fan T, Li Y, Deng WW, Wu T, Zhang W (2017) Short implants (5 to 8 mm) versus longer implants (.8 mm) with sinus lifting in atrophic posterior maxilla: a meta–analysis of RCTs. Clin Implant Dent Relat Res 19:207–215

    PubMed  Google Scholar 

  12. Pohl V, Thoma DS, Sporniak–Tutak K, et al. (2017) Short dental implants (6 mm) versus long dental implants (11–15 mm) in combination with sinus floor elevation procedures: 3-year results from a multicentre, randomized, controlled clinical trial. J Clin Periodontol 44:438–445

    PubMed  Google Scholar 

  13. Monje A, Suarez F, Galindo-Moreno P, García-Nogales A, Fu J-H, Wang H-L (2014) A systematic review on marginal bone loss around short dental implants. Clin Oral Implants Res 25:1119–1124

    PubMed  Google Scholar 

  14. Isidor F (2006) Influence of forces on peri-implant bone. Clin Oral Implants Res 17:8–18

    PubMed  Google Scholar 

  15. Soliman TA, Taman RA, Yousief SA, El-Anwar MI (2015) Assessment of stress distribution around implant fixture with three different crown materials. Tanta Dental J 12:249–258

    Google Scholar 

  16. Juodzbalys G, Kubilius R, Eidukynas V, Raustia AM (2005) Stress distribution in bone: Single-unit implant prostheses veneered with porcelain or a new composite material. Implant Dent 14:166–175

    PubMed  Google Scholar 

  17. Sannino G, Marra G, Feo L, Vairo G, Barlattani A (2010) 3D finite element non linear analysis on the stress state at bone-implant interface in dental osteointegrated implants. Oral Implantol (Rome) 3:26–37

    CAS  Google Scholar 

  18. Morneburg TR, Proschel PA (2002) Measurement of masticatory forces and implant loads: a methodologic clinical study. Int J Prosthodont 15:20–27

    PubMed  Google Scholar 

  19. Bankoglu Gungor M, Yilmaz H (2016) Evaluation of stress distributions occurring on zirconia and titanium implant-supported prostheses: a three-dimensional finite element analysis. J Prosthet Dent 116:346–355

    CAS  PubMed  Google Scholar 

  20. Kaleli N, Sarac D, Kulunk S, Ozturk O (2018) Effect of different restorative crown and customized abutment materials on stress distribution in single implants and peripheral bone: a three-dimensional finite element analysis study. J Prosthet Dent 119:437–445

    CAS  PubMed  Google Scholar 

  21. Zarone F, Russo S, Sorrentino R (2010) From porcelain-fused-to-metal to zirconia: clinical and experimental considerations. Dent Mater 2011 2:83–96

    Google Scholar 

  22. Cheng CW, Chien CH, Chen CJ, Papaspyridakos P (2019) Randomized controlled clinical trial to compare posterior implant-supported modified monolithic zirconia and metal-ceramic single crowns: one-year results. J Prosthodont 28:15–21

    PubMed  Google Scholar 

  23. Sakoguchi K, Minami H, Suzuki S, Tanaka T (2013) Evaluation of fracture resistance of indirect composite resin crowns by cyclic impact test: influence of crown and abutment materials. Dent Mater J 32:433–440

    PubMed  Google Scholar 

  24. Borges Radaelli MT, Idogava HT, Spazzin AO, Noritomi PY, Boscato N (2018) Parafunctional loading and occlusal device on stress distribution around implants: a 3D finite element analysis. J Prosthet Dent 120:565–572

    PubMed  Google Scholar 

  25. Gao J, Matsushita Y, Esaki D, Matsuzaki T, Koyano K (2014) Comparative stress analysis of delayed and immediate loading of a single implant in an edentulous maxilla model. J Dent Biomech 5:1758736014533982. https://doi.org/10.1177/1758736014533982

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ha SR (2015) Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type. J Adv Prosthodont 7:475–483

    PubMed  PubMed Central  Google Scholar 

  27. Pérez-Pevida E, Brizuela-Velasco A, Chávarri-Prado D, Jiménez-Garrudo A, Sánchez-Lasheras F, Solaberrieta-Méndez E, Diéguez-Pereira M, Fernández-González FJ, Dehesa-Ibarra B, Monticelli F (2016) Biomechanical consequences of the elastic properties of dental implant alloys on the supporting bone: finite element analysis. Biomed Res Int 4:1–9

    Google Scholar 

  28. Moraes SLD, Pellizzer EP, Verri FR, Santiago JF, Silva JVL (2015) Three-dimensional finite element analysis of stress distribution in retention screws of different crown–implant ratios. Comput Methods Biomech Biomed Engin 18:689–696

    CAS  PubMed  Google Scholar 

  29. Alonso FR, Triches DF, Mezzomo LAM, Teixeira ER, Shinkai RSA (2018) Primary and secondary stability of single short implants. J Craniofac Surg 29:e548–e551

    PubMed  Google Scholar 

  30. Chen L, Yang T, Yang G, Zhou N, Dong H, Mou Y (2020) Retrospective clinical analysis of risk factors associated with failed short implants. Clin Implant Dent Relat 22:112–118

    Google Scholar 

  31. Barbier L, vander Sloten J, Krzesinski G, Schepers E, van der Perre G (1998) Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 25:847–858

    CAS  PubMed  Google Scholar 

  32. Akca K, Iplikcioglu H (2002) Finite element stress analysis of the effect of short implant usage in place of cantilever extensions in mandibular posterior edentulism. J Oral Rehabil 29:350–356

    CAS  PubMed  Google Scholar 

  33. Bulaqi HA, Mousavi Mashhadi M, Safari H, Samandari MM, Geramipanah F (2015) Effect of increased crown height on stress distribution in short dental implant components and their surrounding bone: a finite element analysis. J Prosthet Dent 113:548–557

    PubMed  Google Scholar 

  34. Culhaoglu A, Ozkir S, Celik G, Terzioglu H (2013) Comparison of two different restoration materials and two different implant designs of implant-supported fixed cantilevered prostheses: a 3D finite element analysis. Eur J Gen Dent 2:144–150

    Google Scholar 

  35. Emre Ozkir S, Unal SM, Yurekli E, Guven S (2016) Effects of crown retrieval on implants and the surrounding bone: a finite element analysis. J Adv Prosthodont 8:131–137

    Google Scholar 

  36. Santiago Junior JF, Pellizzer EP, Verri FR, de Carvalho PSP (2013) Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study. Mater Sci Eng C Mater Biol Appl 33:4700–4714

    PubMed  Google Scholar 

  37. Tabata LF, Assunção WG, Adelino Ricardo Barão V, de Sousa EAC, Gomes EA, Delben JA (2010) Implant platform switching: biomechanical approach using two-dimensional finite element analysis. J Craniofac Surg 21:182–187

    PubMed  Google Scholar 

  38. Nissan J, Ghelfan O, Gross O, Priel I, Gross M, Chaushu G (2011) The effect of crown/implant ratio and crown height space on stress distribution in unsplinted implant supporting restorations. J Oral Maxillofac Surg 69:1934–1939

    PubMed  Google Scholar 

  39. Rieger MR, Mayberry M, Brose MO (1990) Finite element analysis of six endosseous implants. J Prosthet Dent 63:671–676

    CAS  PubMed  Google Scholar 

  40. Chang M, Chronopoulos V, Mattheos N (2013) Impact of excessive occlusal load on successfully-osseointegrated dental implants: a literature review. J Investig Clin Dent 4:142–150

    PubMed  Google Scholar 

  41. Datte CE, Tribst JP, Dal Piva AO, Nishioka RS, Bottino MA, Evangelhista AM, Monteiro FMM, Borges AL (2018) Influence of different restorative materials on the stress distribution in dental implants. J Clin Exp Dent 10:e439–e444

    PubMed  PubMed Central  Google Scholar 

  42. Qian L, Todo M, Matsushita Y, Koyano K (2009) Effects of implant diameter, insertion depth, and loading angle on stress/strain fields in implant/jawbone systems: finite element analysis. Int J Oral Maxillofac Implants 24:877–886

    PubMed  Google Scholar 

  43. Jafarian M, Mirhashemi FS, Emadi N (2019) Finite element analysis of stress distribution around a dental implant with different amounts of bone loss: an in vitro study. Dent Med Probl 56:27–32

    PubMed  Google Scholar 

  44. Yoon K-H, Kim S-G, Lee J-H, Suh S-W (2011) 3D finite element analysis of changes in stress levels and distributions for an osseointegrated implant after vertical bone loss. Implant Dent 20:354–359

    PubMed  Google Scholar 

  45. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O (2004) Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res 15:401–412

    PubMed  Google Scholar 

  46. Akca K, Cehreli MC (2006) Biomechanical consequences of progressive marginal bone loss around oral implants: a finite element stress analysis. Med Biol Eng Comput 44:527–535

    PubMed  Google Scholar 

  47. Wang CF, Huang HL, Lin DJ, Shen YW, Fuh LJ, Hsu JT (2013) Comparisons of maximum deformation and failure forces at the implant-abutment interface of titanium implants between titanium-alloy and zirconia abutments with two levels of marginal bone loss. Biomed Eng Online 12:45

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tribst JPM, Dal Piva AMO, Shibli JA, Borges ALS, Tango RN (2017) Influence of implantoplasty on stress distribution of exposed implants at different bone insertion levels. Braz Oral Res 31:e96

    PubMed  Google Scholar 

  49. Salimi H, Savabi O, Nejatidanesh F (2011) Current results and trends in platform switching. Dent Res J (Isfahan) 8:30–36

    Google Scholar 

  50. Sotto-Maior BS, Senna PM, da Silva WJ, Rocha EP, del Bel Cury AA (2012) Influence of crown-to-implant ratio, retention system, restorative material, and occlusal loading on stress concentrations in single short implants. Int J Oral Maxillofac Implants 27:e13–e18

    PubMed  Google Scholar 

  51. Toniollo MB, Macedo AP, Rodrigues RCS, Ribeiro RF, Mattos Mda G (2013) A three-dimensional finite element analysis of the stress distribution on morse taper implants surface. J Prosthodont Res 57:206–212

    PubMed  Google Scholar 

  52. Hingsammer L, Watzek G, Pommer B (2017) The influence of crown-to-implant ratio on marginal bone levels around splinted short dental implants: a radiological and clinical short term analysis. Clin Implant Dent Relat Res 19:1090–1098

    PubMed  Google Scholar 

  53. Birdi H, Schulte J, Kovacs A, Weed M, Chuang SK (2010) Crown-to-implant ratios of short-length implants. J Oral Implantol 36:425–433

    PubMed  Google Scholar 

  54. Garaicoa-Pazmiño C, Suárez-López del Amo F, Monje A, Catena A, Ortega-Oller I, Galindo-Moreno P, Wang HL (2014) Influence of crown/implant ratio on marginal bone loss: a systematic review. J Periodontol 85:1214–1221

    PubMed  Google Scholar 

  55. Schepke U, Meijer HJ, Vermeulen KM, Raghoebar GM, Cune MS (2016) Clinical bonding of resin nano ceramic restorations to zirconia abutments: a case series within a randomized clinical trial. Clin Implant Dent Relat Res 18:984–992

    PubMed  Google Scholar 

  56. Malchiodi L, Ricciardi G, Salandini A, Caricasulo R, Cucchi A, Ghensi P (2020) Influence of crown–implant ratio on implant success rate of ultra-short dental implants: results of a 8- to 10-year retrospective study. Clin Oral Investig 24:3213–3222

    PubMed  Google Scholar 

  57. Nisand D, Renouard F (2014) Short implant in limited bone volume. Periodontology 2000 66:72–96

    Google Scholar 

  58. Okada S, Koretake K, Miyamoto Y, Oue H, Akagawa Y (2013) Increased crown-to-implant ratio may not be a risk factor for dental implant failure under appropriate plaque control. PLoS One 8:e63992

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bayraktar M, Gultekin BA, Yalcin S, Mijiritsky E (2013) Effect of crown to implant ratio and implant dimensions on periimplant stress of splinted implant-supported crowns: a finite element analysis. Implant Dent 22:406–413

    PubMed  Google Scholar 

  60. Gehrke SA (2015) Importance of crown height ratios in dental implants on the fracture strength of different connection designs: an in vitro study. Clin Implant Dent Relat Res 17:790–797

    PubMed  Google Scholar 

  61. Quaranta A, Piemontese M, Rappelli G, Sammartino G, Procaccini M (2014) Technical and biological complications related to crown to implant ratio: a systematic review. Implant Dent 23:180–187

    PubMed  Google Scholar 

  62. Alvarez-Arenal A, Gonzalez-Gonzalez I, de Llanos-Lanchares H, Martin-Fernandez E, Brizuela-Velasco A, Ellacuria-Echebarria J (2017) Effect of implant- and occlusal load location on stress distribution in Locator attachments of mandibular overdenture. A finite element study. J Adv Prosthodont 9:371–380

    PubMed  PubMed Central  Google Scholar 

  63. Hong HR, Pae A, Kim Y, Paek J, Kim H-S, Kwon K-R (2012) Effect of implant position, angulation, and attachment height on peri-implant bone stress associated with mandibular two-implant overdentures: a finite element analysis. Int J Oral Maxillofac Implants 27:e69–e76

    PubMed  Google Scholar 

  64. Liu J, Pan S, Dong J, Mo Z, Fan Y, Feng H (2013) Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: a three-dimensional finite element analysis. J Dent 41:241–249

    PubMed  Google Scholar 

  65. Lombardi T, Berton F, Salgarello S, Barbalonga E, Rapani A, Piovesana F, Gregorio C, Barbati G, Di Lenarda R, Stacchi C (2019) Factors influencing early marginal bone loss around dental implants positioned subcrestally: a multicenter prospective clinical study. J Clin Med 8. https://doi.org/10.3390/jcm8081168

  66. Pascoletti G, Cali M, Bignardi C, Conti P, Zanetti EM (2020) Mandible morphing through principal components analysis. In: Rizzi C, Adrisano A, Leali F, Gherardini F, Pini F, Vergnano A (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham

  67. de Paula GA, da Mota AS, Moreira AN, de Magahlães CS, Cornacchia TP, Cimini CA Jr (2012) The effect of prosthesis length and implant diameter on the stress distribution in tooth-implant-supported prostheses: a finite element analysis. Int J Oral Maxillofac Implants 27:e19–e28

    PubMed  Google Scholar 

  68. Ovesy M, Voumard B, Zysset P (2018) A nonlinear homogenized finite element analysis of the primary stability of the bone-implant interface. Biomech Model Mechanobiol 17:1471–1480

    PubMed  Google Scholar 

  69. Jörn D, Kohorst P, Besdo S, Borchers L, Stiesch M (2016) Three-dimensional nonlinear finite element analysis and microcomputed tomography evaluation of microgap formation in a dental implant under oblique loading. Int J Oral Maxillofac Implants 31:e32–e42

    PubMed  Google Scholar 

Download references

Funding

This project was supported by the Altinbas University Scientific Research Funding (Grant Number: PB2017/2).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation was performed by Demet Cagil Ayvalioglu, and data collection and analysis were performed by Pinar Ercal, Aysegül Erten Taysi, Meltem Mert Eren, and Soner Sismanoglu. The first draft of the manuscript was written by Pinar Ercal and revised by Aysegül Erten Taysi, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pinar Ercal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ercal, P., Taysi, A.E., Ayvalioglu, D.C. et al. Impact of peri-implant bone resorption, prosthetic materials, and crown to implant ratio on the stress distribution of short implants: a finite element analysis. Med Biol Eng Comput 59, 813–824 (2021). https://doi.org/10.1007/s11517-021-02342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02342-w

Keywords

Navigation