Skip to main content
Log in

Excited state absorption of Cu-doped barium borate nanostructures under nanopulsed laser excitation

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Intensity- and concentration-dependent nonlinear absorption of Cu-doped (\(\gamma \) and \(\beta )\)-\(\hbox {BaB}_{2}\hbox {O}_{4}\) nanostructures was measured by a standard open aperture Z-scan setup under nanopulsed (9 ns, 10 Hz) laser excitation (532 nm) at various peak intensities (1.26–2.52 GW/\(\hbox {cm}^{2})\). Intensity-dependent 2PA coefficient exposes the involvement of accumulative 2PA process rather than genuine 2PA. From ground state absorption studies, existence of new energy states due to Cu incorporation has availed a near-resonant state favoring excited state absorption leading to sequential 2PA. Among the samples, 0.05 M Cu-doped \(\gamma \)-\(\hbox {BaB}_{2}\) \(\hbox {O}_{4}\) \((2.6\times 10^{-10}\) m/W, \(0.78\times 10^{12}\) \(\hbox {W}/\hbox {m}^{2})\) and 0.03 M Cu-doped \(\beta \)-\(\hbox {BaB}_{2} \hbox {O}_{4}\) \((2.5\times 10^{-10}\) m/W, \(1.21\times 10^{12}\hbox {W}/\hbox {m}^{2})\) exhibit higher 2PA coefficient and lower onset limiting threshold. The presence of CT and intragap states of \(\hbox {Cu}^{2+}\) ions-induced strain in visible region transformed genuine 2PA in pristine (\(\gamma \) and \(\beta )\)-\(\hbox {BaB}_{2}\) \(\hbox {O}_{4}\) nanorods into sequential 2PA (1PA\(+\)2PA) in Cu-doped (\(\gamma \) and \(\beta )\)-\(\hbox {BaB}_{2}\) \(\hbox {O}_{4}\). By simple hydrothermal process, concentration-dependent Cu-doped (\(\gamma \) and \(\beta )\)-\(\hbox {BaB}_{2}\) \(\hbox {O}_{4}\) nanostructures were prepared and their structural and optical properties were studied. Thus, Cu-doped (\(\gamma \) and \(\beta )\)-\(\hbox {BaB}_{2}\) \(\hbox {O}_{4}\) exhibit sequential 2PA (1PA\(+\)ESA)-based optical limiting with enhanced 2PA coefficient than its pristine (\(\gamma \) and \(\beta )\)-\(\hbox {BaB}_{2}\) \(\hbox {O}_{4}\) nanorods.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has data included as electronic supplementary material.

References

  1. E.A. Al- Nasir, A.Y. Al- Ahmad, A.A. Hussein, Q.M. Ali, A.A. Sultan, A.H. Al- Mowali, Low optical limiting and nonlinear optical properties of vanadyl phthalocyanine using a CW laser. Chem. Mater. Res. 7, 18–25 (2013)

    Google Scholar 

  2. C. Babeela, T.C.S. Girisun, G. Vinitha, Optical limiting behavior of \(\beta \)-\(\text{ BaB}_{2}\text{ O}_{4}\) nanoparticles in pulsed and continuous wave regime. J. Phys. D Appl. Phys. 48, 065102–065109 (2015)

    Article  ADS  Google Scholar 

  3. B. Schwarz, G. Ritt, M. Koerber, B. Eberle, Laser-induced damage threshold of camera sensors and micro-optoelectromechanical. Syst. Opt. Eng. 56, 03410–034119 (2017)

    Google Scholar 

  4. N. Venkatram, D.N. Rao, M.A. Akundi, Nonlinear absorption, scattering and optical limiting studies of CDS nanoparticles. Opt. Express 13, 867–872 (2005)

    Article  ADS  Google Scholar 

  5. M. Calvete, G.Y. Yang, M. Hanack, Porphyrins and phthalocyanines as materials for optical limiting. Synth. Met. 141, 231–243 (2004)

    Article  Google Scholar 

  6. C. Heyward, C. McMillen, J. Kolis, Hydrothermal synthesis and crystal structure of two new hydrated alkaline earth metal borates \(\text{ Sr}_{3}\text{ B}_{6}\text{ O}_{11}\)(OH)\(_{2}\) and \(\text{ Ba}_{3}\text{ B}_{6}\text{ O}_{11}\)(OH)\(_{2}\). Inorg. Chem. 51, 3956–3962 (2012)

    Article  Google Scholar 

  7. Z. Tao, Z. Shi, W. Chen, Y. S. Jiang, H. M. Yuan, J. S. Chen, Synthesis and X-ray crystal structures of two new alkaline-earth metal borates: \(\text{ SrBO}_{2}\)(OH) and \(\text{ Ba}_{3}\text{ B}_{6}\text{ O}_{9}\)(OH). Dalton Trans. 9, 2031–2035 (2002)

    Google Scholar 

  8. H. Yang, C. Hu, J. L. Song, J. G. Mao, \(\beta \)-BaGa[\(\text{ B}_{4}\text{ O}_{8}\)(OH)](\(\text{ H}_{2}\)O) and \(\text{ Ba}_{4}\text{ Ga }\) [\(\text{ B}_{10}\text{ O}_{\rm 18}\)(OH)\(_{5}\)](\(\text{ H}_{2}\)O): new barium galloborates featuring unusual [\(\text{ B}_{4}\text{ O}_{8}\text{(OH) }]_{5}\)- and \([\text{ B}_{10}\text{ O}_{18}\text{(OH) }_{5}]_{11}\)- clusters. RSC Adv. 4, 45258–45265 (2014)

    Article  ADS  Google Scholar 

  9. Y. Shen, S. Zhao, J. Luo, The role of cations in second-order nonlinear optical materials based on \(\pi \)-conjugated [\(\text{ BO}_{3}]3\)- groups Coord. Chem. Rev. 366, 1–28 (2018)

    Google Scholar 

  10. L. Liu, X. Su, Y. Yang, S. Pan, X. Dong, S. Han, J. Zhang, Z. Kang, \(\text{ Ba}_{2}\text{ B}_{10}\text{ O}_{17}\): a new centrosymmetric alkaline-earth metal borate with a deep-UV cut-off edge. Dalton Trans. 43, 8905–8910 (2014)

    Article  Google Scholar 

  11. S. Block, A. Perloff, The crystal structure of barium tetraborate, \(\text{ BaO}_{2}\text{ B}_{2}\text{ O}_{3}\). Acta Crystallogr. 19, 297–300 (1965)

    Article  Google Scholar 

  12. J. Krogh-Moe, M. Ihara, On the crystal structure of barium tetraborate, \(\text{ BaO}_{4}\text{ B}_{2}\text{ O}_{3}\). Acta Crystallogr. 25, 2153–2154 (1969)

    Article  Google Scholar 

  13. L. Kutschabsky, The crystal structure of \(\text{ Ba }[\text{ B(OH)}_{4}\)]\(_{2}\).\(\text{ H}_{2}\text{ O }\). Acta Crystallogr. Sect. B 25, 1811–1816 (1969)

    Article  Google Scholar 

  14. V. Kravchenko, Some characteristic features of the crystal chemistry of borates. J. Struct. Chem. 6, 76–83 (1965)

    Article  Google Scholar 

  15. O. Ferro, S. Merlino, S.A. Vinogradova, D. Yu, D.Y. Pushcharovsky, O.V. Dimitrova, Crystal structures of two new Ba borates pentaborate, \(\text{ Ba}_{2}\) [\(\text{ B}_{5}\text{ O}_{9}\)] Cl.0.5 \(\text{ H}_{2}\text{ O }\) and \(\text{ Ba}_{2}\) [\(\text{ B}_{5}\text{ O}_{8}\)\((\text{ OH})_{2}\)](OH). J. Alloys Compd. 305, 63–71 (2000)

    Article  Google Scholar 

  16. D.Y. Pushcharovsky, S. Merlino, O. Ferro, S.A. Vinogradova, O.V. Dimitrova, The crystal structures of two new Ba borates: pentaborate hydrate, \(\text{ Ba }\)\([\text{ B}_{5}\text{ O}_{8}\,(\text{ OH})]\).\(\text{ H}_{2}\text{ O }\), and decaborate, \(\text{ LiBa}_{2}\)\([\text{ B}_{10}\text{ O}_{16}\,(\text{ OH})_{3}]\). J. Alloys Compd. 306, 163–169 (2000)

    Article  Google Scholar 

  17. R. Li, X. Tao, X. Li, Low temperature, organic-free synthesis of \(\text{ Ba}_{3}\text{ B}_{6}\text{ O}_{9}\text{(OH) }_{6}\) nanorods and \(\beta \)-\(\text{ BaB}_{2}\text{ O}_{4}\) nanospindles. J. Mater. Chem. 19, 983–987 (2009)

    Article  Google Scholar 

  18. Q. Zhao, X. Zhu, X.B.H. Fan, Y. Xie, Synthesis and optical properties of \(\beta \)-\(\text{ BaB}_{2}\text{ O}_{4}\) network-like nanostructures. Eur. J. Inorg. Chem. 13, 1829–1834 (2007)

    Article  Google Scholar 

  19. C. Babeela, T.C.S. Girisun, Low temperature phase barium borate: a new optical limiter in continuous wave and nano pulsed regime. Opt. Mater. 49, 190–195 (2015)

    Article  ADS  Google Scholar 

  20. H.A. ElBatal, A.M. Abdelghany, N.A. Ghoneim, F.H. ElBatal, Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study. Spectrochim Acta Part A 133, 534–541 (2014)

    Article  ADS  Google Scholar 

  21. F. Xiao, E.H. Song, S. Ye, Q.Y. Zhang, Abnormal broadband photoluminescence from \(\text{ Yb}^{3+}/\text{Mn}^{2+}\) codoped barium octaborate. J. Alloys Compd. 587, 177–182 (2014)

    Article  Google Scholar 

  22. R. Kayestha, Hajela K. Sumati, ESR studies on the effect of ionic radii on displacement of \(\text{ Mn}^{2+}\) bound to a soluble \(\beta \)-galactoside binding hepatic lectin. FEBS Lett. 368, 285–288 (1995)

    Article  Google Scholar 

  23. J.F. Xu, W. Ji, Z.X. Shen, W.S. Li, S.H. Tang, X.R. Ye, D.Z. Jia, X.Q. Xin, Raman spectra of CuO nanocrystals. J. Raman Spectrosc. 30, 413–415 (1999)

    Article  ADS  Google Scholar 

  24. P.K. Samanta, A. Saha, T. Kamilya, Wet chemically synthesized CuO bipods and their optical properties. Recent Pat. Nanotechnol. 10, 20–25 (2016)

    Article  Google Scholar 

  25. P. Ney, M.D. Fontana, A. Maillmard, K. Polgar, Assignment of the Raman lines in single crystal barium metaborate. J. Phys. Condens. Matter. 10, 673–681 (1998)

    Article  ADS  Google Scholar 

  26. J.C. Zhang, B. Moine, C. Pedrini, C. Parent, G. Flem, Optical spectroscopy of monovalent copper-doped borate glasses. J. Phys. Chem. Solids 51, 933–939 (1990)

    Article  ADS  Google Scholar 

  27. A. El-Trass, H. ElShamy, I. El-Mehasseb, M. El-Kemary, CuO nanoparticles: synthesis, characterization, optical properties and interaction with amino acids. Appl. Surf. Sci. 258, 2997–3001 (2012)

    Article  ADS  Google Scholar 

  28. Ch.V. Reddy, Ch.R. Krishna, U.S.U. Thampy, Y.P. Reddy, P.S. Rao, R.V.S.S.N. Ravikumar, Spectral investigations of \(\text{ Cu}^{2+}\) doped beta-barium borate nanopowder by the co-precipitation method. Phys. Scr. 84, 025602–025608 (2011)

    Article  ADS  Google Scholar 

  29. A. Thulasiramudu, S. Buddhudu, Optical characterization of \(\text{ Cu}^{2+}\) ion-doped zinc lead borate glasses. J. Quant. Spectrosc. Radiat. Transf. 97, 181–194 (2006)

    Article  ADS  Google Scholar 

  30. Ch. Rajyasree, P.M.V. Teja, K.V.R. Murthy, D.K. Rao, Optical and other spectroscopic studies of lead, zinc bismuth borate glasses doped with CuO. Phys. B. 406, 4366–4372 (2011)

    Article  ADS  Google Scholar 

  31. F.H. El-Batal, Gamma ray interaction with copper-doped sodium phosphate glasses. J. Mater. Sci. 43, 1070–1079 (2008)

    Article  ADS  Google Scholar 

  32. H.A. ElBatal, A.M. Abdelghany, F.H. ElBatal, Kh.M. ElBadry, F.A. Moustaffa, UV-visible and infrared absorption spectra of gamma irradiated CuO-doped lithium phosphate, lead phosphate and zinc phosphate glasses: a comparative study. Phys. B 406, 3694–3703 (2011)

    Article  ADS  Google Scholar 

  33. A. Kaur, S. Mann, B. Goyal, B. Pal, D. Goyal, CuO nanostructures of variable shapes as an efficient catalyst for [3\(+\) 2] cycloaddition of azides with terminal alkyne. RSC Adv. 6, 102773–102743 (2016)

    Article  ADS  Google Scholar 

  34. A. Das, S. Ratha, R.K. Yadav, A. Mondal, C.S. Rout, K.V. Adarsh, Strong third-order nonlinear response and optical limiting of \(\alpha \)-\(\text{ NiMoO}_{4}\) nanoparticles. J. Appl. Phys. 122, 013107–013112 (2017)

    Article  ADS  Google Scholar 

  35. T.C.S. Girisun, M. Saravanan, S.V. Rao, Enhanced broadband optical limiting and switching of nonlinear absorption in functionalized solar exfoliated reduced graphene oxide–Ag–\(\text{ Fe}_{2}\text{ O}_{3}\) nanocomposites. J. Appl. Phys. 124, 193101–193112 (2018)

    Article  ADS  Google Scholar 

  36. M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W.V. Stryland, Sensitive measurement of optical nonlinearities using a single beam IEEE. J. Quantum Electron. 26(4), 760–770 (1990)

    Article  ADS  Google Scholar 

  37. B. Anand, A. Kaniyoor, S.S.S. Sai, R. Philip, S. Ramaprabhu, Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids. J. Mater. Chem. C 1, 2773–2780 (2013)

    Article  Google Scholar 

  38. P. Chantharasupawong, R. Philip, N.T. Narayanan, P.M. Sudeep, A. Mathkar, P.M. Ajayan, J. Thomas, Optical power limiting in fluorinated graphene oxide: an insight into the nonlinear optical properties. J. Phys. Chem. C 116, 25955–25961 (2012)

    Article  Google Scholar 

  39. M. Saravanan, T.C.S. Girisun, Enhanced nonlinear optical absorption and optical limiting properties of superparamagnetic spinel zinc ferrite decorated reduced graphene oxide nanostructures Appl. Surf. Sci. 392, 904–911 (2017)

    Article  ADS  Google Scholar 

  40. T.C.S. Girisun, M. Saravanan, V.R. Soma, Wavelength-dependent nonlinear optical absorption and broadband optical limiting in Au–\(\text{ Fe}_{2}\text{ O}_{3}\)–rGO nanocomposites. Appl. Nano Mater. 11, 6337–6348 (2018)

    Article  Google Scholar 

  41. C. Babeela, N.K.S. Narendran, M. Pannipara, A.G. Al-Sehemi, T.C.S. Girisun, Excited state absorption assisted optical limiting action of Fe decorated \(\gamma \)-BBO nanorods. Mater. Chem. Phys. 237, 121827–121834 (2019)

    Article  Google Scholar 

  42. C. Babeela, M.A. Assiri, T.C.S. Girisun, Genuine two photon absorption and excited state absorption in Fe nanowires decorated \(\beta \)-\(\text{ BaB}_{2}\text{ O}_{4}\) nanoplatelets. Opt. Mat. 95, 109267–109278 (2019)

    Article  Google Scholar 

  43. C. Babeela, M.A. Assiri, T.C.S. Girisun, Facile synthesis, characterization and intensity-dependent nonlinear absorption of Ni-doped (\(\gamma \) and \(\beta )\)-\(\text{ BaB}_{2}\text{ O}_{4}\) nanostructures. J. Mater. Sci. Mater. Electron. 31, 4618–4631 (2020)

    Article  Google Scholar 

  44. C. Babeela, T.C.S. Girisun, M.A. Assiri, A.G. Al-Sehemi, 2PA and 3PA induced broadband limiting of \(\text{ Cr}^{3+}\) doped \(\text{ BaB}_{2}\text{ O}_{4}\) nanostructures. J. Mol. Liq. 298, 111996–112112 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The author T.C.S acknowledges the CSIR, India [03(1375)/16/EMR-II], for providing financial support to carry out this research work. The authors are thankful to the Deanship of Scientific Research at King Khalid University for funding this work through the Research Group Project under Grant Number R. G. P.1/177/41.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the paper.

Corresponding author

Correspondence to T. C. Sabari Girisun.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 400 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babeela, C., Assiri, M.A., Al-Sehemi, A.G. et al. Excited state absorption of Cu-doped barium borate nanostructures under nanopulsed laser excitation . Eur. Phys. J. D 75, 102 (2021). https://doi.org/10.1140/epjd/s10053-021-00116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00116-5

Navigation