Skip to main content
Log in

The Properties of Nonvacuum Electron Beam Melted Composite Coating after Thermal Treatment

  • Published:
Russian Physics Journal Aims and scope

The paper studies the influence of thermal treatment of the structure and properties of the composite coating consisting of chromium and titanium carbides and obtained by nonvacuum electron beam melting. It is shown that the coating tempering leads to a decrease in the microhardness and wear resistance. This is because the austenitic structure decomposition with the formation of the soft ferrite-carbide structure. The formation of very hard martensite strengthens the tempered coating and improves its microhardness, which is comparable with that of the initial coating after the electron beam melting. The wear resistance of the hardened composite coating is lower than that of the electron beam melted coating because of brittle martensite, which cannot retain hard carbide particles. The composite coating produced under the optimum treatment conditions possesses higher properties and does not require an additional thermal treatment, that can modify the structure and reduce the mechanical properties of the coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Fadeev, M. G. Golkovski, A. I., Korchagin, et al., Radiat. Phys. Chem., 57, 653–655 (2000).

    Article  ADS  Google Scholar 

  2. M. G. Golkovskii, Quenching and Relativistic Electron Beam Welding Without Vacuum. Process Capability [in Russian], LAP Lambert Academic Publishing, Saarbrücken (2013).

    Google Scholar 

  3. I. A. Bataev, D. O. Mul, A. A. Bataev, et al., Mater. Charact., 112, 60–67 (2016).

    Article  Google Scholar 

  4. V. K. Narva, A. V. Marants, and Zh. A. Sentyurina, Izv. Vyssh. Uchebn. Zaved., Poroshkovaya metallurgiya i funktsional’nye pokrytiya, No. 4, 25–31 (2012).

  5. A. J. Detor and C. A. Schuh, J. Mater. Res., 22, No. 11, 3233–3248 (2007).

    Article  ADS  Google Scholar 

  6. J. Y. Chen, K. Conlon, L. Xue, et al., Mat. Sci. Eng. A-Struct., 527, 7265–7273 (2010).

    Article  Google Scholar 

  7. H. Liu, K. Wang, X. Zhang, et al., Surf. Coat. Technol., 228, S296–S300 (2013).

    Article  Google Scholar 

  8. J. Y. Chen, S. H. Wang, and L. J. Xue, J. Mater. Sci., 47, 779–792 (2012).

    Article  ADS  Google Scholar 

  9. V. I. Gorynin, S. Yu. Kondrat'ev, and M. I. Olenin, Met. Sci. Heat Treat., 55, No. 10, 533–539 (2013).

    ADS  Google Scholar 

  10. T. A. Krylova, K. V. Ivanov, and V. E. Ovcharenko, Inorganic Materials: Applied Research, 10, 595–599 (2019).

    Article  Google Scholar 

  11. T. Ya. Kosolapova, Carbides [in Russian], Metallurgiya, Moscow (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Krylova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 11, pp. 23–27, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylova, T.A., Chumakov, Y.A. The Properties of Nonvacuum Electron Beam Melted Composite Coating after Thermal Treatment. Russ Phys J 63, 1861–1866 (2021). https://doi.org/10.1007/s11182-021-02244-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-021-02244-2

Keywords

Navigation