Skip to main content
Log in

Effects of Asymmetric Boundary Conditions on Freezing Process of Raw Potatoes with Variable Thermophysical Properties

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the effects of asymmetric boundary conditions encountered in refrigerators on the freezing process of raw potatoes were investigated in order to improve their preservation and extend their shelf life. A 2D numerical model, based on experimentally determined temperature-dependent thermophysical properties of potatoes, was first developed using COMSOL Multiphysics software in order to thermally characterize a potato during freezing process. This potato, having a square cross-section of various edge lengths (40 mm and 50 mm), was placed on a meshed surface and subjected to a coolant (air) flow of temperature −40 \(^{\circ }\)C and different velocities (ranging between 0 m\(\cdot\)s\(^{-1}\) and 8 m\(\cdot\)s\(^{-1}\)) from its top, left, and right sides. The evolutions over time of the temperature distribution and the soft–solid interface position in the potato were determined and analyzed. The developed model was then validated thanks to experiments carried out in the same conditions considered in the numerical simulations. An analytical model of the literature was finally established and the obtained results showed an acceptable agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

b :

Distance between interface y-direction and edge on top side, m

Bi :

Biot number

\(c_p\) :

Specific heat capacity, J\(\cdot\)kg\(^{-1}\) \(\cdot\)K\(^{-1}\)

Fo :

Fourier number

g :

Gravitational acceleration, m\(\cdot\)s\(^{-2}\)

Gr :

Grashof number

h :

Heat transfer coefficient, W\(\cdot\)m\(^{-2}\)\(\cdot\)K\(^{-1}\)

H :

Enthalpy, J\(\cdot\)g\(^{-1}\)

K :

Proportion of state change per temperature unit, K\(^{-1}\)

L :

Potato edge length, m

Nu :

Nusselt number

Pr :

Prandtl number

Q :

Ratio of extracted heat power to total heat power needed to be extracted

Re :

Reynolds number

Ste :

Stefan number

t :

Time, s

T :

Temperature, \(^{\circ }\)C

v :

Velocity, m\(\cdot\)s\(^{-1}\)

x :

Abscissa, m

y :

Ordinate, m

\(\beta\) :

Thermal expansion coefficient, K\(^{-1}\)

\(\Delta\) :

Difference

\(\lambda\) :

Thermal conductivity, W\(\cdot\)m\(^{-1}\)\(\cdot\)K\(^{-1}\)

\(\mu\) :

Dynamic viscosity, Pa\(\cdot\)s

\(\varphi\) :

Volumetric heat source, W\(\cdot\)m\(^{-3}\)

\(\rho\) :

Density, kg\(\cdot\)m\(^{-3}\)

\(\theta\) :

Moisture content, %

a :

Air

amb :

Ambient

cd :

Conduction

fc :

Forced convection

fr :

Freezing

ls :

Liquid–solid

nc :

Natural convection

p :

Potatoes

w :

Wall

\(*\) :

Equivalent

References

  1. L. Liebenberg, J.P. Meyer, Appl. Therm. Eng. 27, 2713 (2007)

    Article  Google Scholar 

  2. S.L. Suárez-Gómez, M.L. Sánchez, F. Blanco, J. Ayala, F.J. de CosJuez, J. Hazard. Mater. 336, 168 (2017)

    Article  Google Scholar 

  3. R.M. George, Trends Food Sci. Technol. 4, 134 (1993)

    Article  Google Scholar 

  4. L.E. Jeremiah, Freezing Effects on Food Quality, 1st edn. (CRC Press, Boca Raton, 1996)

    Google Scholar 

  5. M. Zhang, Z.H. Duan, J.F. Zhang, J. Peng, J. Food Eng. 61, 393 (2004)

    Article  Google Scholar 

  6. S. Songsaeng, P. Sophanodora, J. Kaewsrithong, T. Ohshima, Food Chem. 123, 286 (2010)

    Article  Google Scholar 

  7. A.C. Cleland, S. Özilgen, Int. J. Refrig. 21, 359 (1998)

    Article  Google Scholar 

  8. Z. Wang, H. Wu, G. Zhao, X. Liao, F. Chen, J. Wu, X. Hu, J. Food Eng. 79, 502 (2007)

    Article  Google Scholar 

  9. Q.T. Pham, J. Food Eng. 127, 85 (2014)

    Article  Google Scholar 

  10. A.C. Cleland, R.L. Earle, J. Food Sci. 49, 1034 (1984)

    Article  Google Scholar 

  11. A. Biglia, L. Comba, E. Fabrizio, P. Gay, D.R. Aimonino, Energy Procedia 101, 305 (2016)

    Article  Google Scholar 

  12. F. Sepahvandi, H.M. Heravi, S.R. Saleh, Int. J. Heat Technol. 35, 75 (2017)

    Article  Google Scholar 

  13. J.B. Dima, M.V. Santos, P.J. Baron, A. Califano, N.E. Zaritzky, Food Bioprod. Process. 92, 54 (2014)

    Article  Google Scholar 

  14. E. Mokheimer, N.A. El-Aziz, H.E. Amin, M. Salem, Int. J. Energy Res. 27, 1117 (2003)

    Article  Google Scholar 

  15. P.D. Sanz, M. Ramos, J. Aguirre-Puente, J. Food Eng. 40, 233 (1999)

    Article  Google Scholar 

  16. G.L. Lei, W. Dong, M. Zheng, Z.Q. Guo, Y.Z. Liu, Int. J. Heat Mass Transf. 107, 934 (2017)

    Article  Google Scholar 

  17. A.G. Ivanova, V.M. Fuksov, S.F. Gerasimov, A.I. Pokhodun, Int. J. Thermophys. 38, 31 (2017)

    Article  ADS  Google Scholar 

  18. S.K. Singh, T.N. Mishra, K.N. Rai, Comput. Therm. Sci. 7, 327 (2015)

    Article  Google Scholar 

  19. A. Chabarov, M. Aider, Innov. Food Sci. Emerg. Technol. 21, 151 (2014)

    Article  Google Scholar 

  20. M. Farid, R. Kizilel, Chem. Eng. Process. 48, 217 (2009)

    Article  Google Scholar 

  21. M. Leung, K.Y. Chan, J. Zhejiang Univ. Sci. A 10, 1 (2009)

    Article  Google Scholar 

  22. L. Bronfenbrener, Chem. Eng. Process. 48, 476 (2009)

    Article  Google Scholar 

  23. L. Bronfenbrener, R. Bronfenbrener, Cold Reg. Sci. Technol. 64, 19 (2010)

    Article  Google Scholar 

  24. M. Leung, W.H. Ching, D.Y.C. Leung, G.C.K. Lam, J. Phys. D Appl. Phys. 38, 477 (2005)

    Article  ADS  Google Scholar 

  25. S. Ho, J. Food Sci. 69, E224 (2006)

    Article  Google Scholar 

  26. M. Farid, Chem. Eng. Process. 41, 1 (2002)

    Article  ADS  Google Scholar 

  27. R. Basu, JOM 68, 1679 (2016)

    Article  Google Scholar 

  28. H. Yuan, Z. Lu, J. Lu, Food Processing and Preservation Technology (Chemical Industry Press, Beijing, 2000)

    Google Scholar 

  29. Z. Zhong, Research on the intrinsic relationship between the thermophysical parameters of fruits and vegetables and their physiological and biochemical indexes and the neural network prediction model. Ph.D. Thesis, Shanghai Ocean University (2010)

  30. G.C.J. Bart, Int. J. Refrig. 21, 55 (1998)

    Article  Google Scholar 

Download references

Funding

This project was funded by the National Natural Science Foundation of China (No. 51706154).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to this study conception and design. The numerical model development, material preparation, experiments achievement, data collection, and analysis were performed by Georges El Achkar and Rachid Bennacer. The first draft of the manuscript was written by Georges El Achkar and all authors commented on the previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Georges El Achkar.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Achkar, G., Liu, B. & Bennacer, R. Effects of Asymmetric Boundary Conditions on Freezing Process of Raw Potatoes with Variable Thermophysical Properties. Int J Thermophys 42, 71 (2021). https://doi.org/10.1007/s10765-021-02826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02826-9

Keywords

Navigation